Simple exploration of 144690-92-6

As the paragraph descriping shows that 144690-92-6 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.144690-92-6,Triphenyl methyl olmesartan,as a common compound, the synthetic route is as follows.,144690-92-6

Example 2 Olmesartan medoxomil of formula I20 g of the starting compound of formula III were stirred up in 75 ml of acetic acid and after stirring for 10 minutes 30 ml of water were added dropwise during 5 minutes. Then, the suspension was put in a 50C bath and stirred for 4 hours. Then 16 ml of water were added dropwise in 5 minutes, the mixture was taken out of the bath and after 5 minutes it was put in a cooling bath with the temperature of 10C. After 20 minutes the separated insoluble fraction, containing the side product trityl alcohol, was aspirated and washed with a mixture of 4 ml of AcOH + 2 ml of water. 40 ml of acetone and then 70 ml of water were added to the filtrate at 30C, the separated product was aspirated and 1 1.5 g (82 %) of the product were obtained.

As the paragraph descriping shows that 144690-92-6 is playing an increasingly important role.

Reference£º
Patent; ZENTIVA, K. S.; STACH, Jan; JARRAH, Kamal; KRULIS, Radim; RADL, Stanislav; CERNY, Josef; WO2012/55380; (2012); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Analyzing the synthesis route of 144690-92-6

With the synthetic route has been constantly updated, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

As a common heterocyclic compound, it belong Dioxole compound,Triphenyl methyl olmesartan,144690-92-6,Molecular formula: C48H44N6O6,mainly used in chemical industry, its synthesis route is as follows.,144690-92-6

A 250 round bottom flask was loaded with MTT (10 g), acetone/water (2/2 vol.), and 3 eq of H2SO4. The mixture was stirred at 40 C., and after 2-4 hrs, triphenyl carbinol (TPC) was precipitated by the addition of water and filtrated out. NaHCO3 was added to the filtrate and the mixture was cooled to room temperature and stirred for 1 hr. Crude olmesartan medoxomil was obtained as white crystals (90% yield).

With the synthetic route has been constantly updated, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

Reference£º
Patent; Hedvati, Lilach; Pilarsky, Gideon; US2006/149078; (2006); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

New learning discoveries about 144690-92-6

With the synthetic route has been constantly updated, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

Triphenyl methyl olmesartan, cas is 144690-92-6, it is a common heterocyclic compound, the Dioxole compound, its synthesis route is as follows.,144690-92-6

Example 7:Preparation of olmesartan medoxomil Trityl olmesartan medoxomil (260 gm) as obtained in example 1 was dissolved in toluene (2600 ml) and then added concentrated hydrochloric acid (156 ml) for 1 hour 30 minutes at room temperature. The reaction mass was maintained for 1 hour 30 minutes at room temperature and then added water (1000 ml). The reaction mass was stirred for 45 minutes at room temperature and the layers were separated. To the aqueous layer was added ethyl acetate (5000 ml) at room temperature. The reaction mass was cooled to 15 to 20C and pH of the reaction mass was adjusted to 4.5 to 5.5 with sodium carbonate (20%, 560 ml). The reaction mass was stirred for 20 minutes at 20C and the layers were separated. The organic layer was dried over sodium sulfate and ethyl acetate was distilled off completely under vacuum at below 45C to obtain a residual mass. To the residual mass was added ethyl acetate (400 ml) at 40C and then heated to 75 to 80C. The contents were maintained for 30 minutes at 75 to 80C. The reaction mass was cooled to room temperature and stirred for 1 hour. The reaction mass was further cooled to 10 to 15C and stirred for 1 hour 30 minutes, filtered. The solid obtained was dried at 40 to 45C for 4 hours to obtain 150 gm of olmesartan medoxomil.Olmesartan medoxomil: 98.6%;Olmesartan acid impurity: 0.32%;Trityl olmesartan medoxomil impurity: 0.35%Methyl olmesartan medoxomil impurity: 0.35%.

With the synthetic route has been constantly updated, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

Reference£º
Patent; HETERO RESEARCH FOUNDATION; PARTHASARADHI REDDY, Bandi; RATHNAKAR REDDY, Kura; MURALIDHARA REDDY, Dasari; RAJI REDDY, Rapolu; RAMAKRISHNA REDDY, Matta; VAMSI KRISHNA, Bandi; WO2012/1694; (2012); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

The important role of 144690-92-6

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan

Name is Triphenyl methyl olmesartan, as a common heterocyclic compound, it belongs to Dioxole compound, and cas is 144690-92-6, its synthesis route is as follows.,144690-92-6

Example 7; Olmesartan medoxomil (V); Water (20 g) was added to a solution of the starting substance (III; 20 g) in acetonitrile (100 ml), and the mixture was heated to a mild boil for 14 h. After cooling, the formed trityl alcohol was sucked off, and the mixture was concentrated. After crystallization from isopropyl acetate, 10 g (71 %) of the product with an HPLC purity of 97 % was obtained. The HPLC purity of the product recrystallized from isopropanol was 99.5 %.

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan

Reference£º
Patent; ZENTIVA, A.S.; WO2007/48361; (2007); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Some tips on Triphenyl methyl olmesartan

With the complex challenges of chemical substances, we look forward to future research findings about 144690-92-6,belong Dioxole compound

As a common heterocyclic compound, it belongs to Dioxole compound, name is Triphenyl methyl olmesartan, and cas is 144690-92-6, its synthesis route is as follows.,144690-92-6

Example 2: preparation of olmesartan medoxomil (I) as per the present invention: To a mixture of acetic acid ( 37.5 ml) and water (12.5 ml) was added trityl olmesartan medoxomil (III) (10 g) and heated at 40-45 C for 2 hours. Water (12.5 ml) was added and the reaction mixture was filtered to remove trityl alcohol. The filtrate was subjected to agitated thin film dryer, wherein the feed rate was of about 4 to 10 ml per minute, heating medium was jacketed hot water at 45-50 C and vacuum was 70-75 mm/Hg. Crude olmesartan medoxomil (I) was recovered form ATFD. HPLC purity: olmesartan medoxomil (I) (97.81 %); olmesartan acid impurity (II) (0.97%). To acetone (40 ml) crude olmesartan medoxomil (I) was added, the slurry was heated at 54-58 C for 30 minutes and then stirred for 1 -2 hours at 0-5 C, the solid was filtered. Wet solid was added to acetone (120 ml) and heated at 55-60C. The solution was filtered. From the filtrate about 95 ml of acetone was distilled out at atmospheric pressure. The concentrated mass was stirred at 25-30 C for 8-12 hours and then at 0-5 C for 1 -3 hours. The solid was filtered, washed with acetone and dried. Yield 5.3 g (76.81 %). HPLC purity: olmesartan medoxomil (I) (99.67 %); olmesartan acid impurity (II) (0.07%).

With the complex challenges of chemical substances, we look forward to future research findings about 144690-92-6,belong Dioxole compound

Reference£º
Patent; LUPIN LIMITED; FIRKE, Rajendra, Viswanath; SISODIA, Ujjwal,Komalsingh; BHANGALE, Chandrakant,Shriram; SHIVDAVKAR, Radhakrishna, Bhikaji; GODBOLE, Himanshu, Madhav; SINGH, Girij, Pal; WO2013/21312; (2013); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Downstream synthetic route of Triphenyl methyl olmesartan

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO130,mainly used in chemical industry, its synthesis route is as follows.,144690-92-6

A solution of MTT in an organic solvent and water (20%) was heated for 4-8 hrs at reflux. When the solvents were either acetonitrile (ACN), isopropyl alcohol (IPA) or t-butanol (t-BuOH), 1 volume of water was added, and the reaction was stirred until the amount of MTT was less than 2%. The mixture was evaporated to dryness. Ethyl acetate (EtOAc, 1 volume) was added to the residue and then evaporated again (twice). The resulting solid was dissolved in EtOAc (12 vol) and heated to reflux. The solution was cooled (2 C.) and stirred for 2 hrs. The product was filtered, washed (EtOAc, 1 vol), and dried on vacuum (45 C.). Table 1 shows the process details with different organic solvents: TABLE 1 Total solvent Time Solvent(s) Volume Temperature ( C.) (hrs) pH ACN:H2O 5:1 + 1 85 7 4.89-4.3 IPA:H2O 5:1 + 1 85 7 4.62-4.25t-BuOH:H2O 5:1 + 1 85 7 4.78-4.28n-propanol:H2O 5:1 reflux 2.5 4.3n-BuOH:H2O 5:1 110 2.5 4.412-BuOH:H2O 5:1 100 3 4.5iso-penthanol:H2O 5:1 100 3 5DMA:H2O 5:1 100 4 4.5DMF:H2O 5:1 100 4 4.5

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

Reference£º
Patent; Hedvati, Lilach; Pilarsky, Gideon; Shenkar-Garcia, Natalia; US2006/148870; (2006); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Analyzing the synthesis route of 144690-92-6

With the synthetic route has been constantly updated, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

As a common heterocyclic compound, it belong Dioxole compound,Triphenyl methyl olmesartan,144690-92-6,Molecular formula: C48H44N6O6,mainly used in chemical industry, its synthesis route is as follows.,144690-92-6

Take 40g of compound 5, Add 80mL of methanol, 330 mL of ethyl acetate, Warmed to 45 , After 8 hours of reaction, Add 860mL water, Insoluble matter was removed by filtration, The filtrate was concentrated, In oily liquid, Acetonitrile, Stirred under a solid precipitation, filter, Washed with ethanol, 23.2 g of white solid was obtained, The yield was 83.1% The HPLC purity was 99.2%.

With the synthetic route has been constantly updated, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

Reference£º
Patent; Disha Pharmaceutical Group Co., Ltd.; Zhang Zhaoxing; Zhang Hongqiang; Qin Litai; Li Wei; Li Zongwen; Xia Haijian; (6 pag.)CN103012382; (2016); B;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Analyzing the synthesis route of 144690-92-6

With the synthetic route has been constantly updated, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

As a common heterocyclic compound, it belong Dioxole compound,Triphenyl methyl olmesartan,144690-92-6,Molecular formula: C48H44N6O6,mainly used in chemical industry, its synthesis route is as follows.,144690-92-6

One hundred ml of methanol was added to 10 g of (5-methyl-2-oxo-l,3-dioxol- 4-yl) methyl 4-(2-hydroxypropan-2-yl)-2-propyl-l-((2′-(l-trityl-lH-tetrazol-5-yl) biphenyl-4-yl) methyl)-lH-imidazole-5-carboxylate (Pharmacostech). Then to the reaction mixture was added 10 g of resin pre-treated with hydrochloric acid of pH 2-3 (TRILUE SCR-IO gel type), followed by refluxing for 6 hours. The solid components were filtered out from the reaction mixture and washed with 100 ml of methanol. The solid substance obtained by vacuum distillation of the filter-in solution was dissolved into a small quantity of acetone, and n-hexane was added to the acetone solution to obtain 6.58 g (yield rate: 94%) of the standard compound represent by Formula 9: 1H NMR (300 MHz, DMSO), delta 7.50-7.69 (m, 4H), 7.03 (d, 2H, J=8.0 Hz), 6.85 (d, 2H, >8.0 Hz), 5.41 (s, 2H), 5.22 (s, IH), 5.05 (s, 2H), 2.50 (s, 2H), 2.07 (s, 3H).

With the synthetic route has been constantly updated, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

Reference£º
Patent; PHARMACOSTECH CO., LTD.; KIM, Jae Won; CHA, Young Gwan; RYU, Hyung Chul; KIM, Sun Joo; WO2010/67913; (2010); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Analyzing the synthesis route of 144690-92-6

With the synthetic route has been constantly updated, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

As a common heterocyclic compound, it belong Dioxole compound,Triphenyl methyl olmesartan,144690-92-6,Molecular formula: C48H44N6O6,mainly used in chemical industry, its synthesis route is as follows.,144690-92-6

The reaction flask was charged with 400 g of compound VII (0.50 mol) and 70% aqueous acetic acid solution of 3200 ml, Reaction was carried out at 50 C for 2 hours. After the completion of the reaction, the solvent was concentrated and concentrated, and ammonia was added to the residue.PH = 7, extracted with 1400 ml of ethyl acetate, the ethyl acetate layer was washed with water, and finally with anhydrous sodium sulfateDried; filtered, the filtrate was concentrated to dryness and the residue was recrystallized from ethanol to give the compound I pure product 256.1G, yield: 91.79%.

With the synthetic route has been constantly updated, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

Reference£º
Patent; Hunan Ouya biological Co. Ltd.; Lin, kaizhao; (19 pag.)CN103304550; (2016); B;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Downstream synthetic route of Triphenyl methyl olmesartan

With the synthetic route has been constantly updated, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO408,mainly used in chemical industry, its synthesis route is as follows.,144690-92-6

Trityl olmesartan medoxomil (8 g, 10 mmol) is dissolved in THF (50 ml) and 48 % aqueous hydrobromic acid (3.5 ml, 30 mmol) is added. The mixture is stirred for 1 hour at room temperature and then 1 hour at 0 C. The precipitate is filtered, washed with cold THF (20 ml) and dried overnight in vacuum at room temperature to give 5.7 g of olmesartan medoxomil hydrobromide Form B (98.6 % area)

With the synthetic route has been constantly updated, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

Reference£º
Patent; LEK Pharmaceuticals d.d.; EP2022790; (2009); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem