Continuously updated synthesis method about 144690-92-6

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan

144690-92-6, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”144690-92-6

Example 1; Preparation of olmesartan medoxomilTo dimethyl acetamide (300 ml) was added 4-(1-hydroxy-1-methylethyl)-2-propyl imidazol- 5-carboxylic acid ethyl ester (50 gms) and powdered sodium hydroxide (26 gms). To this, 4-[2-(trityltetrazol-5-yl)phenyl]benzyl bromide (135 gms) was charged at 45-500C. The contents were stirred for 5 hours at 45-500C. Diisopropylethyl amine (100 ml) was charged to the reaction mass at 40-450C. A solution of 5-methyl-2-oxo-1 , 3-dioxane-4-yl)methyl chloride (80 gms) diluted with dimethyl acetamide (160 ml) was slowly added to the reaction mass at 40-450C over a period of 1 hour. The contents were heated to 60-650C and maintained for 4 hours. The reaction mass was then cooled to 30-350C and neutralized with concentrated hydrochloride acid. The reaction mass was filtered to remove inorganic impurities, charcoalized using charcoal (10 gms) andstirred for 30 minutes at 40-450C. The reaction mass was filtered over hyflo. The clear filtrate was acidified with hydrochloric acid (100 ml) slowly at 25-30C. The contents were stirred at 60C for 1 hour. The reaction mass was chilled to 0-5C and filtered to remove tritanol. The reaction mass was concentrated under reduced pressure. The residue was quenched with water (500ml), neutralized with base and extracted in dichloromethane (500 ml). The clear dichloromethane extract was then concentrated under reduced pressure and stripped off with acetone. The residue thus obtained was isolated from acetone (250 ml) to give 55 gms of the title compound. Chromatographic purity- > 99%; Example 2Preparation of olmesartan medoxomilTo dimethyl acetamide (600 ml) was added 4-(1-hydroxy-1-methylethyl)-2-propyl imidazol- 5-carboxylic acid ethyl ester (100 gms) and powdered potassium hydroxide (50 gms). To this was charged 4-[2-(trityltetrazol-5-yl)phenyl]benzyl bromide (270 gms) at 45-50C. The contents were stirred for 5 hours at 45-50C. Diisopropylethyl amine (200 ml) was charged to the reaction mass at 40-450C. To this was slowly added a solution of 5-methyl-2-oxo- 1 ,3-dioxane-4-yl)methyl chloride (160 gms) diluted with dimethyl acetamide (320 ml) at 40- 45C over a period of 1 hour. The contents were heated to 60-650C and maintained for 4 hours. The reaction mass was then cooled to 30-350C and was neutralized with concentrated hydrochloride acid. The reaction mass was filtered to remove inorganic impurities. The reaction mass was charcoalized using charcoal (20 gms) and was stirred for 30 minutes at 40-450C. The reaction mass was filtered over hyflo. The clear filtrate was acidified with hydrochloric acid (200 ml) slowly at 25-300C. The contents were stirred at 60C for 1 hour. The reaction mass was chilled to 0-50C and was filtered to remove tritanol. The reaction mass was concentrated under reduced pressure. The residue was quenched with water (1000 ml), neutralized with base and extracted in dichloromethane (1000 ml). The clear dichloromethane extract was then concentrated under reduced pressure, stripped off with acetone. The residue thus obtained was isolated from the acetone (500 ml) to give 110 gms of the title compound. Chromatogrphic purity- > 99%; Example 3Preparation of olmesartan medoxomilTo dimethyl acetamide (800 ml) was added 4-(1-hydroxy-1-methylethyl)-2-propyl imidazol- 5-carboxylic acid ethyl ester (100 gms) and powdered potassium carbonate (200 gms). To this was charged 4-[2-(trityltetrazol-5-yl)phenyl]benzyl bromide (300 gms) at 45-50C. The contents were stirred for 8-10 hours at 45-50C. The insolubles were filtered. The contents were cooled to 5-100C. Potassium tertiary butoxide (100 gms) was charged at a temperature below 45C. The reaction was maintained at 40-450C for 3 hrs. To this was slowly added 5-methyl-2-oxo-1 ,3-dioxane-4-yl) methyl chloride at 40-450C over a period of 1 hour. The contents were heated to 60-650C and maintained for 4 hours. The reaction mass was then cooled to 30-350C and was neutralized with concentrated hydrochloride acid. The reaction mass was filtered to remove inorganics. The reaction mass was charcoalized using charcoal (10 gms) and was stirred for 30 minutes at 40-450C. The reaction mass was filtered over hyflo. The clear filtrate was acidified with hydrochloric acid (100 ml) slowly at 25-30C. The contents were stirred at 60C for 1 hour. The reaction mass was chilled to 0-5C and was filtered to remove tritanol. The reaction mass was concentrated under reduced pressure. The residue was quenched with water (500 ml), neutralized with base and extracted in dichloromethane (500 ml).The clear dichloromethane extract was then concentrated under reduced pressure, stripped off with acetone. The residue thus obtained was isolated from the acetone (250 ml) to give 55 gms of the title compound. Chromatogrphic purity- > 99%

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan

Reference£º
Patent; CIPLA LIMITED; CURTIS, Philip, Anthony; WO2008/43996; (2008); A2;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

A new synthetic route of 144690-92-6

With the synthetic route has been constantly updated, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

144690-92-6, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”144690-92-6

One hundred ml of methanol was added to 10 g of (5-methyl-2-oxo-l,3-dioxol- 4-yl) methyl 4-(2-hydroxypropan-2-yl)-2-propyl-l-((2′-(l-trityl-lH-tetrazol-5-yl) biphenyl-4-yl) methyl)-lH-imidazole-5-carboxylate (Pharmacostech). Then to the reaction mixture was added 10 g of resin pre-treated with hydrochloric acid of pH 2-3 (TRILUE SCR-IO gel type), followed by refluxing for 6 hours. The solid components were filtered out from the reaction mixture and washed with 100 ml of methanol. The solid substance obtained by vacuum distillation of the filter-in solution was dissolved into a small quantity of acetone, and n-hexane was added to the acetone solution to obtain 6.58 g (yield rate: 94%) of the standard compound represent by Formula 9: 1H NMR (300 MHz, DMSO), delta 7.50-7.69 (m, 4H), 7.03 (d, 2H, J=8.0 Hz), 6.85 (d, 2H, >8.0 Hz), 5.41 (s, 2H), 5.22 (s, IH), 5.05 (s, 2H), 2.50 (s, 2H), 2.07 (s, 3H).

With the synthetic route has been constantly updated, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

Reference£º
Patent; PHARMACOSTECH CO., LTD.; KIM, Jae Won; CHA, Young Gwan; RYU, Hyung Chul; KIM, Sun Joo; WO2010/67913; (2010); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Sources of common compounds: 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one

The chemical industry reduces the impact on the environment during synthesis, 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, , I believe this compound will play a more active role in future production and life.

4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”80841-78-7

To the flask was added 2000 g of acetone, 160 g of ethyl 4- (1-hydroxy-1-methylethyl) -2-propylimidazole-5-carboxylate (II), 150 g of K2CO3, 460 g of 4- [2- (Trityltetrazol-5-yl) phenyl] benzyl bromide (III), 20g KI, the temperature was raised to reflux, the reaction was incubated for 34-38 hours under stirring.Then add 102g KOH, reflux reaction 6 ~ 8h. Cool to 10 ~ 20 , add 170g DMDO-Cl, incubated for 30 ~ 60min.Heating to reflux, the reaction 22 to 26 hours.After the reaction was added 40g of diatomaceous earth, stirring for 30 to 60 minutes, suction filtration, 200g acetone rinse cake. To the filtrate was added 800g of drinking water and 200g of refined hydrochloric acid, the reaction at room temperature for 2 to 4 hours, filtered to remove by-product triphenylcarbinol. Dropping 10% K2CO3 aqueous solution, adjusting feedstock pH to 4, cooling to 10 ~ 20 , stirring crystallization 2h, filtration, the filter cake with a mixture of pre-cooled 45g acetone and 230g of drinking water washing and drying, to obtain Olmesartan Medoxomil 309 g, total yield 83.1% (relative to ethyl-4- (1-hydroxy-1-methylethyl) -2-propylimidazole-5- carboxylate (II)), purity: 99.27% of the main peak, 0.08% of the olmesartan acid, 0.14% of the triphenylmethanol, and 0.13% of the largest unidentified one.

The chemical industry reduces the impact on the environment during synthesis, 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, , I believe this compound will play a more active role in future production and life.

Reference£º
Patent; Zhejiang Huahai Zhicheng Pharmaceutical Co., Ltd.; Zhejiang Huahai Pharmaceutical Co., Ltd.; Jin Congyang; Wang Jiquan; Zhang Wenling; Wang Peng; (10 pag.)CN107311990; (2017); A;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Discovery of 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one

The chemical industry reduces the impact on the environment during synthesis, 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, , I believe this compound will play a more active role in future production and life.

4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”80841-78-7

The reaction flask was charged with 697.5 g of compound V obtained in the previous step,414 g of anhydrous potassium carbonate (3.00 mol)163.4 g of 4-chloromethyl-5-methyl-1,3-dioxol-2-one (Compound VI) (1.10 mol)And 2500 ml of acetonitrile were refluxed for 2 hours,After the reaction,filter,The filtrate was concentrated to dryness,The residue was stirred in 1500 ml of ethyl acetate and 500 ml of water for 15 minutes,Layered, organic layer and then washed with water,Dried over anhydrous sodium sulfate,filter,The filtrate was concentrated to dryness,To give the crude product of compound VII,Recrystallization from toluene and petroleum ether,To obtain pure product 683.2 grams; two-step yield:85.40% (calculated as compound II).

The chemical industry reduces the impact on the environment during synthesis, 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, , I believe this compound will play a more active role in future production and life.

Reference£º
Patent; Hunan Ouya biological Co. Ltd.; Lin, kaizhao; (19 pag.)CN103304550; (2016); B;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

The origin of a common compound about 144690-92-6

The chemical industry reduces the impact on the environment during synthesis, Triphenyl methyl olmesartan, , I believe this compound will play a more active role in future production and life.

144690-92-6, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”144690-92-6

A solution of MTT in an organic solvent and water (20%) was heated for 4-8 hrs at reflux. When the solvents were either acetonitrile (ACN), isopropyl alcohol (IPA) or t-butanol (t-BuOH), 1 volume of water was added, and the reaction was stirred until the amount of MTT was less than 2%. The mixture was evaporated to dryness. Ethyl acetate (EtOAc, 1 volume) was added to the residue and then evaporated again (twice). The resulting solid was dissolved in EtOAc (12 vol) and heated to reflux. The solution was cooled (2 C.) and stirred for 2 hrs. The product was filtered, washed (EtOAc, 1 vol), and dried on vacuum (45 C.). Table 1 shows the process details with different organic solvents: TABLE 1 Total solvent Time Solvent(s) Volume Temperature ( C.) (hrs) pH ACN:H2O 5:1 + 1 85 7 4.89-4.3 IPA:H2O 5:1 + 1 85 7 4.62-4.25t-BuOH:H2O 5:1 + 1 85 7 4.78-4.28n-propanol:H2O 5:1 reflux 2.5 4.3n-BuOH:H2O 5:1 110 2.5 4.412-BuOH:H2O 5:1 100 3 4.5iso-penthanol:H2O 5:1 100 3 5DMA:H2O 5:1 100 4 4.5DMF:H2O 5:1 100 4 4.5

The chemical industry reduces the impact on the environment during synthesis, Triphenyl methyl olmesartan, , I believe this compound will play a more active role in future production and life.

Reference£º
Patent; Hedvati, Lilach; Pilarsky, Gideon; Shenkar-Garcia, Natalia; US2006/148870; (2006); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

New learning discoveries about 37830-90-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand 4,5-Dimethyl-1,3-dioxol-2-one reaction routes.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.37830-90-3, 4,5-Dimethyl-1,3-dioxol-2-one it is a common compound, a new synthetic route is introduced below.37830-90-3

PREPARATION 18 4-Carbo-(5-methyl-2-oxo-1,3-dioxol-4-ylmethoxy)methylpiperazine hydrochloric acid salt Combine 4,5-dimethyl-1,3-dioxol-2-one (3.42 g, 30 mmol), N-bromosuccinimide (5.34 g, 30 mmol) and AIBN (500 mg, 3 mmol) in anhydrous carbon tetrachloride (100 mL). Heat at reflux. After 2 hours, cool and filter. Concentrate the filtrate to give 4-bromomethyl-5-methyl-1,3-dioxol-2-one (6.5 g, crude) as an oil, which can be used for the next step without further purification.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand 4,5-Dimethyl-1,3-dioxol-2-one reaction routes.

Reference£º
Patent; Hoechst Marion Roussel, Inc.; US5977139; (1999); A;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

The important role of 144690-92-6

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand Triphenyl methyl olmesartan reaction routes.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.144690-92-6, Triphenyl methyl olmesartan it is a common compound, a new synthetic route is introduced below.144690-92-6

Example 7; Preparation of olmesartan medoxomilTo 75 % aqueous acetic acid (1000 ml) was slowly added trityl olmesartan medoxomil (110 gms)[prepared as described in example 5] at 25-30C. The contents were stirred at 600C for 1 hour. The reaction mass was chilled to 0-5C and filtered to remove tritanol. The reaction mass was concentrated under reduced pressure. The residue was quenched with water (500 ml), neutralized with a base and extracted in dichloromethane (500 ml). The clear dichloromethane extract was then concentrated under reduced pressure and stripped off with acetone. The residue thus obtained was isolated from the acetone (250 ml) to give 55 gms of the title compound. Chromatogrphic purity – > 99%

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand Triphenyl methyl olmesartan reaction routes.

Reference£º
Patent; CIPLA LIMITED; CURTIS, Philip, Anthony; WO2008/43996; (2008); A2;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Research on new synthetic routes about 80841-78-7

The chemical industry reduces the impact on the environment during synthesis, 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, , I believe this compound will play a more active role in future production and life.

4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”80841-78-7

130 ml of N,N-dimethylacetamide, 14.0 g (20 mmol) of ethyl 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2′-(1-trityl-1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylate and 2.2 g (16 mmol) of KOH were charged into reaction vessel at room temperature under inert atmosphere. The mixture was stirred at room temperature for 2 h, and then the sample of reaction mixture was analysed (HPLC; starting material 0.2 %, hydrolysed starting material 98.11 %). Then 3.0 g (2.2 mmol) of potassium carbonate powder and 1.4 g (8.4 mmol) of potassium iodide were added. The reaction mixture was cooled to 0 C and 5.0 g (33 mmol) of 4-(chloromethyl)-5-methyl-1,3-dioxol-2-one was added at 0 to 5C. After the addition, the reaction mixture was warmed to 40-45 C within one hour, then the mixture was stirred at this temperature for 2h. The sample of reaction mixture was analysed (HPLC; tritylolmesartan medoxomil 97.22 %, 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2′-(1-trityl-1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylate 0.09 %). The mixture was cooled to 10 to 20 C and then 250 ml of ethyl acetate was added. The mixture was cooled again to 5-10 C and then 200 ml of 10 % NaCl was added slowly. The temperature should not be higher than 25 C during the addition. The phases were mixed separated and organic phase was washed with 100 ml of 10 % NaCl (2*) and dried over anhydrous sodium sulphate. After the filtration filtrate was evaporated under reduced pressure at temperature under 45C to oily residue. To the residue 30 ml of acetonitrile was added at temperature not more than 45C. The mixture was stirred at this temperature for 10 minutes then was cooled to 20 to 25C and stirred at this temperature for 0.5 h and after that 3h at 0 to 5C. The suspension was filtered, the cake washed with cold acetonitrile and dried at 40 to 50C. Yield: 17.0 g (94%) HPLC: 99.72 % of the product, all impurities are under 0.1%. IR: 3408, 1818, 1805, 1741, 1681, 1529, 1147, 1003, 699 XRD:

The chemical industry reduces the impact on the environment during synthesis, 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, , I believe this compound will play a more active role in future production and life.

Reference£º
Patent; Krka Tovarna Zdravil, D.D., Novo Mesto; EP2334668; (2011); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Extended knowledge of 80841-78-7

The chemical industry reduces the impact on the environment during synthesis, 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, , I believe this compound will play a more active role in future production and life.

4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”80841-78-7

188.0kg of tetrahydrofuran was added to a glass-lined reactor, 54.0kg 4- (1- hydroxy-1-methylethyl) -2-propyl-1- {4- [2- (trityl-tetrazol -5 – yl) phenyl] phenyl} methylimidazole-5-carboxylate, 92.0.0kg 4.0kg purified water and lithium hydroxide monohydrate.After complete addition, 20 stirred for 18 hours, once every 2 hours the reaction temperature recording, tracking and detection TLC starting material to substantially complete the reaction.After completion of the reaction, 240.0kg Ethyl acetate and sodium chloride solution (20.0 kg of sodium chloride was added to 180.0kg purified water, and dissolved with stirring), stirred for 10 minutes, allowed to stand for 20 minutes stratification.The organic phase was washed with sodium chloride solution (32.0 kg of sodium chloride was added to 288.0kg purified water, stirred and dissolved) Average washed twice, each wash was stirred for 10 minutes and allowed to stand for 20 minutes.The organic phase was collected, dried over anhydrous sodium sulfate and stirred for 4 hours.Filtered, and the filtrate was concentrated under reduced pressure to remove ethyl acetate (water bath temperature controlled at 45 ¡À 5 , the degree of vacuum at -0.1 ~ -0.06MPa), a solution 188.0kg N, N- dimethylformamide, is added 15.3kg anhydrous potassium carbonate, 2.7kg of potassium iodide was stirred at 20 ¡À 10 was slowly added 14.5kg 4- chloro-5-methyl-1,3-dioxol-2-one, addition was completed, heating, feed temperature control reaction was stirred for 2 hours at 40 ¡À 2 .After completion of the reaction, the material was cooled to 15 ¡À 5 rejection filter, and the filtrate was added to a solution of sodium chloride (338.0kg sodium chloride to 940.0kg purified water, and dissolved with stirring), the following -5 ~ 0 stirred for 4h, rejection was filtered, the filter cake was charged to an oven baking pan blast drying oven at a temperature of 40 ¡À 5 8 hours.To give 58.2kg of trityl olmesartan medoxomil, a yield of 96.5%.

The chemical industry reduces the impact on the environment during synthesis, 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, , I believe this compound will play a more active role in future production and life.

Reference£º
Patent; Lianyungang Runzhong Pharmaceutical Co., Ltd.; Zhong Zhaobo; Cheng Jinrong; He Shaojie; Tang Zhaocheng; (6 pag.)CN110396084; (2019); A;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Continuously updated synthesis method about 144690-92-6

With the complex challenges of chemical substances, we look forward to future research findings about 144690-92-6,belong Dioxole compound

144690-92-6, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”144690-92-6

A solution of MTT in an organic solvent and water (20%) was heated for 4-8 hrs at reflux. When the solvents were either acetonitrile (ACN), isopropyl alcohol (IPA) or t-butanol (t-BuOH), 1 volume of water was added, and the reaction was stirred until the amount of MTT was less than 2%. The mixture was evaporated to dryness. Ethyl acetate (EtOAc, 1 volume) was added to the residue and then evaporated again (twice). The resulting solid was dissolved in EtOAc (12 vol) and heated to reflux. The solution was cooled (2 C.) and stirred for 2 hrs. The product was filtered, washed (EtOAc, 1 vol), and dried on vacuum (45 C.). Table 1 shows the process details with different organic solvents: TABLE 1 Total solvent Time Solvent(s) Volume Temperature ( C.) (hrs) pH ACN:H2O 5:1 + 1 85 7 4.89-4.3 IPA:H2O 5:1 + 1 85 7 4.62-4.25t-BuOH:H2O 5:1 + 1 85 7 4.78-4.28n-propanol:H2O 5:1 reflux 2.5 4.3n-BuOH:H2O 5:1 110 2.5 4.412-BuOH:H2O 5:1 100 3 4.5iso-penthanol:H2O 5:1 100 3 5DMA:H2O 5:1 100 4 4.5DMF:H2O 5:1 100 4 4.5

With the complex challenges of chemical substances, we look forward to future research findings about 144690-92-6,belong Dioxole compound

Reference£º
Patent; Hedvati, Lilach; Pilarsky, Gideon; Shenkar-Garcia, Natalia; US2006/148870; (2006); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem