A new synthetic route of 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one

The chemical industry reduces the impact on the environment during synthesis, 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, , I believe this compound will play a more active role in future production and life.

4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”80841-78-7

Example 236.0 g (50.3 mmol) ethyl 4-(1-hydroxy-1-methylethyl)-2-propyl-1-{4-[2-(trityltetrazol-5-yl)-phenyl]phenyl}-methyl imidazole-5-carboxylate (Va) and 3.0 g (75.4 mmol) of NaOH were suspended in 413 ml dimethylacetamide. The suspension was then stirred at room temperature for 20 h and after that 6.9 g (50.3 mmol) of K2CO3, were added. The mixture was cooled to 0 C. and solution of 15.4 g (70.4 mmol) 4-chloromethyl-5-methyl-2-oxo-1,3-dioxolene in 39 ml of dimethylacetamide were slowly added. The mixture was slowly heated to 50 C. and stirred at this temperature for 2 h. After esterification was completed, the mixture was cooled to 10 C. and poured into a mixture of 625 ml of ethyl acetate and 625 ml of 10% NaCl, and stirred at 25 C. for 15 min. The phases were separated and organic phase was washed 2¡Á with 500 ml of 10% NaCl, dried over Na2SO4 and filtered. The filtrate was concentrated up to ? (approximately 270 g) at reduced pressure.To the resulting solution, 80 ml of ethanol and 8.3 ml (100 mmol) of conc. HCl were added and stirred at 24-26 C. for 3 h. To the cooled mixture 600 ml of water was added and pH of the suspension was estimated to 5 by addition of 5 M NaOH. The phases were stirred for 15 min and separated. Water phase was reextracted with 150 ml of ethyl acetate. Collected organic phases were dried over Na2SO4, filtered and concentrated under reduced pressure. 560 ml of ethyl acetate were added and the mixture was evaporated again. After that, 300 ml of ethyl acetate were added and the mixture was cooled to 20 C. and stirred for 1 h, filtered off and washed with 20 ml of fresh ethyl acetate. The yield of the product (I) was 21 g (75%).

The chemical industry reduces the impact on the environment during synthesis, 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, , I believe this compound will play a more active role in future production and life.

Reference£º
Patent; KRKA; US2009/131680; (2009); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Extracurricular laboratory: Synthetic route of 37830-90-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand 4,5-Dimethyl-1,3-dioxol-2-one reaction routes.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.37830-90-3, 4,5-Dimethyl-1,3-dioxol-2-one it is a common compound, a new synthetic route is introduced below.37830-90-3

37830-90-3, To a solution of 4,5-dimethyl-1,3-dioxolene-2-one (TCI, 10 g, 88 mmol) and N- bromosuccinimide (Fluka, 15.69 g, 88 mmol) in carbon tetrachloride (250 mL) was added benzoyl peroxide (Acros, 500 mg, 2.1 mmol). The reaction mixture was then refluxed for 2.5 h after which time the volatiles were evaporated under vacuum. The resulting residue was triturated with some carbon tetrachloride, filtered and the solid cake was washed with carbon tetrachloride. The filtrate volatiles were removed under vacuum and the yellow oily residue was distilled under vacuum (2-5 torr) to give 4-bromomethyl-5-methyl-1,3-dioxolene-2-one 903 (8.35 g, b.p. 94-98 ¡ãC, 49percent) as a pale yellow oil. 1H NMR (CDCI3) 8 4.21 (s, 2H), 2.17 (s, 3H).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand 4,5-Dimethyl-1,3-dioxol-2-one reaction routes.

Reference£º
Patent; RIGEL PHARMACEUTICALS, INC.; WO2005/97760; (2005); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

A new synthetic route of Triphenyl methyl olmesartan

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan

144690-92-6, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”144690-92-6

A mixture of trityl olmesartan medoxomil (4.0 g), methanol (20 mL), and water (10 mL) is stirred at 25-35C for 15 minutes. Aqueous HCI (1 mL) is added drop-wise at 25-35C. The mixture is cooled to 0-50C. Water (30 mL) is added and the mixture is further stirred at 0-5C for 1 hour. The insoluble material is removed by filtration and the pH of the filtrate is adjusted to about 3-4 by adding 10% aqueous NaHCOs at 25-35C. The mixture is extracted with dichloromethane (3chi40 ml_). The organic layers are combined and washed with water (40 ml_). The solvent is distilled under reduced pressure below 400C. Ethyl acetate (10 ml_) is added to the residue and the mixture is heated to 50-600C and stirred for 1 hour. The mixture is cooled to 25-35C. The formed solid is filtered, washed with ethyl acetate (5 ml_), and dried under vacuum at 60-700C (yield 2.0 g).

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan

Reference£º
Patent; DR. REDDY’S LABORATORIES LTD.; DR. REDDY’S LABORATORIES, INC.; KOLLA, Naveen Kumar; MANNE, Nagaraju; NAREDLA, Anitha; SHINDE, Sachin Gulabrao; WO2011/14611; (2011); A2;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Continuously updated synthesis method about 144690-92-6

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

144690-92-6, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”144690-92-6

A solution of MTT in an organic solvent and water (20%) was heated for 4-8 hrs at reflux. When the solvents were either acetonitrile (ACN), isopropyl alcohol (IPA) or t-butanol (t-BuOH), 1 volume of water was added, and the reaction was stirred until the amount of MTT was less than 2%. The mixture was evaporated to dryness. Ethyl acetate (EtOAc, 1 volume) was added to the residue and then evaporated again (twice). The resulting solid was dissolved in EtOAc (12 vol) and heated to reflux. The solution was cooled (2 C.) and stirred for 2 hrs. The product was filtered, washed (EtOAc, 1 vol), and dried on vacuum (45 C.). Table 1 shows the process details with different organic solvents: TABLE 1 Total solvent Time Solvent(s) Volume Temperature ( C.) (hrs) pH ACN:H2O 5:1 + 1 85 7 4.89-4.3 IPA:H2O 5:1 + 1 85 7 4.62-4.25t-BuOH:H2O 5:1 + 1 85 7 4.78-4.28n-propanol:H2O 5:1 reflux 2.5 4.3n-BuOH:H2O 5:1 110 2.5 4.412-BuOH:H2O 5:1 100 3 4.5iso-penthanol:H2O 5:1 100 3 5DMA:H2O 5:1 100 4 4.5DMF:H2O 5:1 100 4 4.5

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

Reference£º
Patent; Hedvati, Lilach; Pilarsky, Gideon; Shenkar-Garcia, Natalia; US2006/148870; (2006); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

The important role of 4,5-Dimethyl-1,3-dioxol-2-one

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand 4,5-Dimethyl-1,3-dioxol-2-one reaction routes.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.37830-90-3, 4,5-Dimethyl-1,3-dioxol-2-one it is a common compound, a new synthetic route is introduced below.37830-90-3

Example 1The feeding substance than the molar amount of the: DMDO: sulfonyl chloride to 1 : 1.3. The organic solvent is dichloromethane, the quality of the organic solvent with DMDO volume ratio is 1:7. Solid free radical scavenging agent is methyl hydroquinone, DMDO the quality of the amount of 1percent.To is provided with a magnetic stirring, constant pressure dropping funnel, reflux condensation tube, thermometer and is provided with a tail gas absorption device 500 ml flask to three in 350 ml dichloromethane, 50gDMDO, under stirring backflow state, slowly dropping 77g sulfonyl chloride, dropping time is approximately 2.5h, heat preservation after dropping 2h, rotary evaporation to remove the solvent. Furthermore, added to the bottoms of 0.5g methyl hydroquinone, for 90 ¡ãC conditions, stirring rearrangement 5h, obtaining a reaction crude. Analysis of the purity of crude 92.33percent, the crude in 2mmHg the vacuum degree of the vacuum distillation, to obtain the target product 52.8g, to yield 81.1percent, purity of 97.87percent.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand 4,5-Dimethyl-1,3-dioxol-2-one reaction routes.

Reference£º
Patent; Six Anke Rui Da New Materials Co.,Ltd.; Bao, Yuanzhi; Weng, Shibing; Zhao, Zhongyao; (6 pag.)CN105348249; (2016); A;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Share a compound : 37830-90-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand 4,5-Dimethyl-1,3-dioxol-2-one reaction routes.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.37830-90-3, 4,5-Dimethyl-1,3-dioxol-2-one it is a common compound, a new synthetic route is introduced below.37830-90-3

Step III: 4-Bromomethyl-5-methyl~l,3-dioxol~2-one; A mixture of 4,5-dimethyl-l,3-dioxol-2-one (1.5 g, 0.013158 mol), NBS (2.34 g, 0.013158 mol) and benzoyl peroxide (0.089 g, 0.0003684 mol) in CCl4 (20 mL) was stirred at 77¡ãC for 6 hrs (TLC monitoring: cyclohexane/AcOEt 6:4). The solution was treated with an aqueous solution OfNaHCO3 and extracted with CH2Cl2. The organic phase was dried over Na2SO4 and concentrated under reduced pressure to give 4-bromomethyl-5 -methyl- 1,3- dioxol-2-one (2.34 g). Yield: 92percent.1H-NMR (400 MHz, CDCl3, delta): 2.13 (s, 3H, CH3), 4.18 (s, 2H, CH2Br).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand 4,5-Dimethyl-1,3-dioxol-2-one reaction routes.

Reference£º
Patent; S.I.M.S. S.r.l. – SOCIETA ITALIANA MEDICINALI SCANDICCI; WO2008/12852; (2008); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Sources of common compounds: 144690-92-6

As the rapid development of chemical substances, we look forward to future research findings about 144690-92-6

144690-92-6, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”144690-92-6

A solution of MTT in an organic solvent and water (20%) was heated for 4-8 hrs at reflux. When the solvents were either acetonitrile (ACN), isopropyl alcohol (IPA) or t-butanol (t-BuOH), 1 volume of water was added, and the reaction was stirred until the amount of MTT was less than 2%. The mixture was evaporated to dryness. Ethyl acetate (EtOAc, 1 volume) was added to the residue and then evaporated again (twice). The resulting solid was dissolved in EtOAc (12 vol) and heated to reflux. The solution was cooled (2 C.) and stirred for 2 hrs. The product was filtered, washed (EtOAc, 1 vol), and dried on vacuum (45 C.). Table 1 shows the process details with different organic solvents: TABLE 1 Total solvent Time Solvent(s) Volume Temperature ( C.) (hrs) pH ACN:H2O 5:1 + 1 85 7 4.89-4.3 IPA:H2O 5:1 + 1 85 7 4.62-4.25t-BuOH:H2O 5:1 + 1 85 7 4.78-4.28n-propanol:H2O 5:1 reflux 2.5 4.3n-BuOH:H2O 5:1 110 2.5 4.412-BuOH:H2O 5:1 100 3 4.5iso-penthanol:H2O 5:1 100 3 5DMA:H2O 5:1 100 4 4.5DMF:H2O 5:1 100 4 4.5, 144690-92-6

As the rapid development of chemical substances, we look forward to future research findings about 144690-92-6

Reference£º
Patent; Hedvati, Lilach; Pilarsky, Gideon; Shenkar-Garcia, Natalia; US2006/148870; (2006); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Discovery of 80841-78-7

The chemical industry reduces the impact on the environment during synthesis, 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, , I believe this compound will play a more active role in future production and life.

4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”80841-78-7

Step B, go to the reaction solution of compound (II) obtained in Step A with stirring,Add 6.27kg of anhydrous sodium carbonate powder and 2.01kg of iodine, replace the air with nitrogen,The nitrogen pressure in the kettle is ?0.01Mpa, the control temperature is 50 ¡À 2 ,15.05 kg of compound (IV) was added dropwise at a constant pressure, and the addition was completed within 40 to 60 minutes.After the reaction was held for 1 hour, the reaction mixture was reduced to below 10 C.Extract with conventional solvents in an extraction kettle, wash with water, and separate the layers.The organic phase was distilled under reduced pressure to recover the solvent, crystallized, centrifuged,After drying, 54.88 kg of the crude compound (I) was obtained.Step C: Add 192.08 kg of ethyl acetate to the 500L refining kettle, start stirring,Add 54.88 kg of crude compound (I) obtained in step B, close the feed port,Keep the pressure ?0.01MPa after replacing air with nitrogen,The temperature was raised to 75 C and dissolved for 25 minutes until it was clear. The filtrate was filtered and the temperature was reduced to 2.5 C.Centrifuge, put the filter cake into the double cone dryer,Under reduced pressure, a small flow of nitrogen was passed in for replacement three times, and the drying temperature was controlled to 40-50 C.Vacuum degree ?-0.09MPa, after drying for 1 hour,Increase the drying temperature to 50 60 and continue drying for 3 hours.After cooling down, 53.60 kg of compound (1) was obtained, and the HPLC content was 99.87%.Compound (III) had a residual content of 0.06%.

The chemical industry reduces the impact on the environment during synthesis, 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, , I believe this compound will play a more active role in future production and life.

Reference£º
Patent; Shandong Xinhua Pharmaceutical Co., Ltd.; Zhu Lianbo; Wu Hui; Dou Guohua; (6 pag.)CN110590758; (2019); A;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Sources of common compounds: 144690-92-6

The chemical industry reduces the impact on the environment during synthesis, Triphenyl methyl olmesartan, , I believe this compound will play a more active role in future production and life.

144690-92-6, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”144690-92-6

To TOLM (75 g) were successively added acetic acid_water=1:1 (330 mL, 4.4 vol) and concentrated sulfuric acid (5.4 mL, 1.08 eq). The obtained mixture was stirred at 25C – 30C for 1 hr. Using TLC (thin layer chromatography) (TLC eluent: 10% methanol/methylene chloride, detection method: UV), complete disappearance of TOLM was confirmed. [0309] The reaction mixture was filtered and insoluble trityl alcohol was removed. The aqueous layer was adjusted to pH 2 – 3 by adding 25% aqueous sodium carbonate solution (initial pH of the reaction mixture was 4 – 4.5). The reaction mixture was stirred for 5 min, methylene chloride (225 mL, 3 vol) was added thereto, and the mixture was stirred for 5 min. Stirring was stopped, and the mixture was stood and partitioned. The aqueous layer was extracted with methylene chloride (2×225 mL, 2×3 vol), the extracts were combined with the organic layer, deionized water (375 mL, 5vol) was added, and the mixture was stirred for 5 min. Stirring was stopped, and the mixture was stood for 5 min and partitioned. To the organic layer was added saturated brine (375 mL, 5 vol), and the mixture was stirred for 5 min, left standing and partitioned. The organic layer was concentrated under reduced pressure at 40C – 45C to give crude OLM MDX (49 g, 93%) as a pale-yellow solid.To the crude OLM MDX (49 g, 1 eq) obtained in the above-mentioned (7) was added acetone (735 mL, 15 vol), and the mixture was stirred at 55C – 60C for 10 min. Furthermore, the reaction mixture was stirred at the same temperature for 15 min, and acetone was evaporated under normal pressure. Heating was stopped when a solid was precipitated, and the mixture was cooled to 25C – 30C. The precipitated solid was collected by filtration and dried with suction for 30 min to give OLM MDX (41 g, 83%). [0311] To the OLM MDX obtained above was added isopropyl alcohol (164 mL, 4 vol), and the mixture was heated to 55C – 60C, and stirred at 55C – 60C for 1 hr. Heating was stopped and the mixture was gradually cooled to 25C – 30C, and stirred at 25C – 30C for 30 min. The precipitated solid was filtered and dried with suction to give OLM MDX (41 g, 100%). [0312] The OLM MDX (41 g) obtained above and acetone (about 1 L) were heated to 55C – 60C, and stirred at 55C – 60C for 25 min. Acetone was evaporated under normal pressure until the mixture became cloudy, and the mixture was gradually cooled to 25C – 30C. The precipitated solid was collected by filtration and dried with suction for 30 min to give OLM MDX (34 g, 83%). The HPLC purity of the obtained OLM MDX was 99.66%. [0313] The OLM MDX (44 g) obtained above was dissolved in acetone (about 1.2 L), and the mixture was stirred at 55C-60C for 10 min. Acetone was evaporated under normal pressure until the solution became cloudy, and the solution was gradually cooled to 25C – 30C. The precipitated solid was collected by filtration, dried with suction for 30 min, blast dried for 1 hr, and further blast dried at 40C – 45C for 5 hr to give OLM MDX (36 g) as a white solid. The HPLC purity of the obtained OLM MDX was 99.8%.

The chemical industry reduces the impact on the environment during synthesis, Triphenyl methyl olmesartan, , I believe this compound will play a more active role in future production and life.

Reference£º
Patent; API Corporation; SEKI, Masahiko; EP2891650; (2015); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Extended knowledge of 144690-92-6

As the rapid development of chemical substances, we look forward to future research findings about 144690-92-6

144690-92-6, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”144690-92-6

Example 2; 36.0 g (50.3 mmol) ethyl 4-(1-hydroxy-1-methylethyl)-2-propyl-1-(4-[2-(trityltetrazol-5-yl)-phenyl]phenyl}-methyl imidazole-5-carboxylate (Va) and 3.0 g (75.4 mmol) of NaOH were suspended in 413 ml dimethylacetamide. The suspension was then stirred at room temperature for 20 h and after that 6.9 g (50.3 mmol) of K2CO3 were added. The mixture was cooled to 0C and solution of 15.4 g (70.4 mmol) 4-chloromethyl-5-methyl-2-oxo-1,3-dioxolene in 39 ml of dimethylacetamide were slowly added. The mixture was slowly heated to 50C and stirred at this temperature for 2 h. After esterification was completed, the mixture was cooled to 10 C and poured into a mixture of 625 ml of ethyl acetate and 625 ml of 10 % NaCl, and stirred at 25 C for 15 min. The phases were separated and organic phase was washed 2x with 500 ml of 10 % NaCl, dried over Na2SO4 and filtered. The filtrate was concentrated up to ? (approximately 270 g) at reduced pressure. To the resulting solution, 80 ml of ethanol and 8.3 ml (100 mmol) of conc. HCl were added and stirred at 24-26C for 3h. To the cooled mixture 600 ml of water was added and pH of the suspension was estimated to 5 by addition of 5 M NaOH. The phases were stirred for 15 min and separated. Water phase was reextracted with 150 ml of ethyl acetate. Collected organic phases were dried over Na2SO4, filtered and concentrated under reduced pressure. 560 ml of ethyl acetate were added and the mixture was evaporated again. After that, 300 ml of ethyl acetate were added and the mixture was cooled to 20 C and stirred for 1h, filtered off and washed with 20 ml of fresh ethyl acetate. The yield of the product (I) was 21 g (75 %)., 144690-92-6

As the rapid development of chemical substances, we look forward to future research findings about 144690-92-6

Reference£º
Patent; KRKA, tovarna zdravil, d.d., Novo mesto; EP1816131; (2007); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem