Share a compound : 144690-92-6

144690-92-6 is used more and more widely, we look forward to future research findings about Triphenyl methyl olmesartan

Triphenyl methyl olmesartan, cas is 144690-92-6, it is a common heterocyclic compound, the Dioxole compound, its synthesis route is as follows.,144690-92-6

A solution of MTT in an organic solvent and water (20%) was heated for 4-8 hrs at reflux. When the solvents were either acetonitrile (ACN), isopropyl alcohol (IPA) or t-butanol (t-BuOH), 1 volume of water was added, and the reaction was stirred until the amount of MTT was less than 2%. The mixture was evaporated to dryness. Ethyl acetate (EtOAc, 1 volume) was added to the residue and then evaporated again (twice). The resulting solid was dissolved in EtOAc (12 vol) and heated to reflux. The solution was cooled (2 C.) and stirred for 2 hrs. The product was filtered, washed (EtOAc, 1 vol), and dried on vacuum (45 C.). Table 1 shows the process details with different organic solvents: TABLE 1 Total solvent Time Solvent(s) Volume Temperature ( C.) (hrs) pH ACN:H2O 5:1 + 1 85 7 4.89-4.3 IPA:H2O 5:1 + 1 85 7 4.62-4.25t-BuOH:H2O 5:1 + 1 85 7 4.78-4.28n-propanol:H2O 5:1 reflux 2.5 4.3n-BuOH:H2O 5:1 110 2.5 4.412-BuOH:H2O 5:1 100 3 4.5iso-penthanol:H2O 5:1 100 3 5DMA:H2O 5:1 100 4 4.5DMF:H2O 5:1 100 4 4.5

144690-92-6 is used more and more widely, we look forward to future research findings about Triphenyl methyl olmesartan

Reference£º
Patent; Hedvati, Lilach; Pilarsky, Gideon; Shenkar-Garcia, Natalia; US2006/148870; (2006); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

The important role of 144690-92-6

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan

Name is Triphenyl methyl olmesartan, as a common heterocyclic compound, it belongs to Dioxole compound, and cas is 144690-92-6, its synthesis route is as follows.,144690-92-6

Example 7; Preparation of olmesartan medoxomilTo 75 % aqueous acetic acid (1000 ml) was slowly added trityl olmesartan medoxomil (110 gms)[prepared as described in example 5] at 25-30C. The contents were stirred at 600C for 1 hour. The reaction mass was chilled to 0-5C and filtered to remove tritanol. The reaction mass was concentrated under reduced pressure. The residue was quenched with water (500 ml), neutralized with a base and extracted in dichloromethane (500 ml). The clear dichloromethane extract was then concentrated under reduced pressure and stripped off with acetone. The residue thus obtained was isolated from the acetone (250 ml) to give 55 gms of the title compound. Chromatogrphic purity – > 99%

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan

Reference£º
Patent; CIPLA LIMITED; CURTIS, Philip, Anthony; WO2008/43996; (2008); A2;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Some tips on 144690-92-6

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan

As a common heterocyclic compound, it belongs to Dioxole compound, name is Triphenyl methyl olmesartan, and cas is 144690-92-6, its synthesis route is as follows.,144690-92-6

1L glass reaction flask was added with 500ml of 75% acetic acid, 100.0g of intermediate 2 was added with stirring, and the mixture was heated to stirAfter 45-55 C, after 2 hours of incubation, reduce the temperature to 20-30 C, add 125ml of water, stir for 30 minutes, filter, filter cake with 100ml of 75% acetic acid, transfer the filtrate to 3L glass reaction bottle, The filtrate was successively added with 1000 ml of dichloromethane and 1000 ml of water, and the mixture was stirred and the organic layer was temporarily stored. The aqueous layer was extracted with 500 ml of dichloromethane, and the organic layer was combined. The organic layer was washed with 1000 ml of water, and the organic layer was washed with 5% carbonic acid. The aqueous sodium hydrogen solution was adjusted to rhoEta=6.0~7.0 (about 600 ml), and the organic layer was washed with 500 ml of water, and the organic layer was separated. The organic layer was concentrated under reduced pressure at 30-40 C until no significant solvent was discharged, and 300 ml was added. Ethyl acetate was stirred and crystallized at 20-30 C for 1 hour, filtered, and the filter cake was rinsed with 300 ml of ethyl acetate. The filter cake was blast dried at 40-50 C for 8 hours to obtain a white solid 60.0 g. (product), yield 86.0%, HPLC: 99.0%.

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan

Reference£º
Patent; Jiashi (Hunan) Pharmaceutical Technology Co., Ltd.; Dai Yongzhi; Liu Hu; Zhu Laifa; Cai Jian; (8 pag.)CN108341804; (2018); A;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Some tips on Triphenyl methyl olmesartan

With the complex challenges of chemical substances, we look forward to future research findings about 144690-92-6,belong Dioxole compound

As a common heterocyclic compound, it belongs to Dioxole compound, name is Triphenyl methyl olmesartan, and cas is 144690-92-6, its synthesis route is as follows.,144690-92-6

Example 5; Olmesartan medoxomil (V); Water (10 g) was added to a solution of the starting substance (III; 20 g) in acetonitrile (50 ml), and the mixture was heated to a mild boil for 14 h. Acetonitrile was evaporated, and, after dissolving in acetone (150 ml), the mixture was filtered through alumina and concentrated. After crystallization from the mixture tetrahydrofuran / ethyl acetate H g (78 %) of the product with an HPLC purity of 97.0 % was obtained. Recrystallization from methanol and water gave 1O g of the product with an HPLC purity of 99.3 %; m.p. 175- 177 0C.; Example 6; Olmesartan medoxomil (V); Water (10 g) was added to a solution of the starting substance (III; 10 g) in acetonitrile (50 ml), and the mixture was heated to a mild boil for 14 h. Acetonitrile was evaporated, and, after dissolving in acetone (150 ml), the mixture was filtered through silica gel and concentrated. After crystallization from acetonitrile, 4 g (57 %) of the product was obtained. After recrystallization from the mixture methyl tert-butyl ether / ethyl acetate, 3.4 g of the product with an HPLC purity of 99.4 % was obtained; m.p. 175-177 C.

With the complex challenges of chemical substances, we look forward to future research findings about 144690-92-6,belong Dioxole compound

Reference£º
Patent; ZENTIVA, A.S.; WO2007/48361; (2007); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Downstream synthetic route of Triphenyl methyl olmesartan

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO77,mainly used in chemical industry, its synthesis route is as follows.,144690-92-6

(4) the C48 H44 N6 O6 AMST – 6, acetone, water, sulfuric acid added to the reactor, the temperature rising to 30 C reaction 2.5 hours, adding water, 30 C continue to reaction 1.5 hours or more, when the raw material to achwhich isve the requirement of lowering the temperature to 5 C stirring 1 or more hours, filtering the triphenyl methanol, the filter cake is washed with water; mother liquor up to 50 C, add sodium bicarbonate, stirring 1 hour, filtration products, the filter cake is washed with water, 50 C decompression drying 12 hours or more to constant weight, to obtain omay sha tanzhi thick; said C48 H44 N6 O6 AMST – 6, acetone, water, sulfuric acid and sodium bicarbonate and the mass ratio of 700:1400:: 2101.4: 194.7: 373.5; (5) the crude product of olmesartan medoxomil and acetone is added to the reaction in the bottle, heat to reflux to totally dissolve, filter press, distilling off acetone, lowering the temperature to -10 C crystallization, filtration, acetone washing, 50 C drying productC29 H30 N6 O6 Olmesartan medoxomil, the crude with olmesartan medoxomil mass ratio of olmesartan medoxomil 448.4: 6500;

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

Reference£º
Patent; Jiangxi Yong Tong Technology Co., Ltd.; Liu Zhongchun; (10 pag.)CN107311989; (2017); A;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Share a compound : 144690-92-6

144690-92-6 is used more and more widely, we look forward to future research findings about Triphenyl methyl olmesartan

Triphenyl methyl olmesartan, cas is 144690-92-6, it is a common heterocyclic compound, the Dioxole compound, its synthesis route is as follows.,144690-92-6

To the three-necked flask were added with 38 ml of ethyl acetate, 45 g of 6.4% dilute hydrochloric acid, 25 g of trityl olmesartan medoxomil was added with stirring. Stir in water bath, control the temperature 15 to 20 C, stirring about 4 hours, TLC plate detection point of raw material disappeared,That is, it is judged that the deprotection reaction is completed.Cooled to room temperature, 115 ml * 5 toluene was added to wash, the aqueous layer was added with 135 ml of acetone, potassium bicarbonate aqueous solution adjusted P=4.0, control temperature 15 ¡À 5 C Stir for 2 hours, Filtered and dried to give 16.0 g of olmesartan medoxomil in a yield of 90.2%. HPLC analysis: purity 98.75%, impurity a (olmesartan acid) 0.71%, individual impurities less than 0.10%

144690-92-6 is used more and more widely, we look forward to future research findings about Triphenyl methyl olmesartan

Reference£º
Patent; Zhejiang Huahai Pharmaceutical Co., Ltd,; Huang, Xiangliang; Zhang, LI; Hua, yuanyuan; Wu, Yong De; (7 pag.)CN102584804; (2016); B;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

The important role of Triphenyl methyl olmesartan

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan

Name is Triphenyl methyl olmesartan, as a common heterocyclic compound, it belongs to Dioxole compound, and cas is 144690-92-6, its synthesis route is as follows.,144690-92-6

A 250 round bottom flask was charged with MTT (10 g), acetone/water (2/2 vol.), and 3 eq of H2SO4. The combination was stirred at room temperature for about 4-6 hrs. Triphenyl carbinol (TPC) was precipitated by adding water and filtered out. NaHC03 was added to the filtrate, and the mixture was cooled to 5C and stirred for 1 hr. Crude olmesartan medoxomil was obtained as white crystals (90% yield).Example 2: Preparation of crude olmesartan medoxomil AIL reactor, equipped with mechanical stirrer and thermometer, was charged with MTT (70 g), acetone (140 ml), water (140 ml), and H2S04 (19.47 g). The reactor was heated to 40C for 2.5 hrs (at EOR, MTT is LT 1%). Water (140 ml) was added at 40C, and the reaction was stirred for 1.5 hrs or until MTT is LT 0.1%. After cooling to 15C and stirring for 1 hr, the TPC was filtered and washed with water (70 ml).NaHC03 was added in portions to the filtrate at room temperature. The reaction mixture was stirred for 1 hr, then filtrated, and the cake was washed with water (140 ml). The solid was dried at 45C in a vacuum oven overnight to obtain crude OLM-Mod (98 % yield).

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan

Reference£º
Patent; TEVA PHARMACEUTICAL INDUSTRIES LTD.; TEVA PHARMACEUTICALS USA, INC.; WO2006/29056; (2006); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Downstream synthetic route of Triphenyl methyl olmesartan

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO159,mainly used in chemical industry, its synthesis route is as follows.,144690-92-6

Example 1-6 (0333) (0334) A mixture of TOLM (0.6 g, 0.75 mmol), sulfuric acid (0.08 g, 0.82 mmol) and 1:1 water-containing acetic acid (2.6 mL, 4.3 vol) was stirred at 25 C. for 1 hr. The reaction mixture was filtered, and the obtained solid was washed with 1:1 water-containing acetic acid (6.0 mL, 10 vol). The filtrates were combined and adjusted to pH 4-5 by adding 25% aqueous sodium carbonate solution. The mixture was partitioned by adding methylene chloride (6.0 mL, 10 vol). The aqueous layer was extracted with methylene chloride (3¡Á5 mL). The organic layer was washed with water (2¡Á5 mL) and saturated brine (5 mL), and concentrated under reduced pressure. The concentrated residue was purified by silica gel column chromatography (5-6% methanol/methylene chloride) and recrystallized from acetonitrile to give OLM (0.45 g, yield 100%). (0335) melting point: 174.5 C.-175.2 C.; (0336) IR (KBr): numax=2969, 1831, 1706, 1475, 1226, 1134, 760 cm-1; (0337) 1H NMR (DMSO-d6): delta=7.70-7.63 (m, 2H), 7.59-7.52 (m, 2H). (0338) 7.04 (d, J=8 Hz, 2H), 6.85 (d, J=8.4 Hz, 2H), 5.42 (s, 2H), 5.21 (s, 1H), 5.05 (s, 2H), 2.60 (t, J=7.6 Hz, 2H), 2.07 (s, 3H), 1.60-1.55 (m, 2H), 1.47 (s, 6H), 0.87 (t, J=7.2 Hz, 3H); (0339) Mass: 559 [M+H]+.

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

Reference£º
Patent; API CORPORATION; Seki, Masahiko; US2015/239854; (2015); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Downstream synthetic route of Triphenyl methyl olmesartan

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO234,mainly used in chemical industry, its synthesis route is as follows.,144690-92-6

Example 8; To a solution of (5-Methyl-2-oxo-1,3-dioxolen-4-yl)methyl-4-(1-hydroxy-1-methyl ethyl)-2-propyl-1-{4-[2-(trityltetrazol-5-yl)phenyl]phenyl}methylimidazole-5-carboxylate (5.0 g; 6.25 mmol) and toluene (20 ml) at 15-20 C. is added hydrochloric acid (30 ml). Reaction mass is stirred at 15-20 C. for about 15 minutes to 4 hours. The reaction is monitored by TLC. After completion of reaction layers are separated. Aqueous layer is washed with toluene (10 ml). Adjusted the pH of the aqueous layer to 5-6 using aqueous potassium carbonate solution (200 ml) and the compound is extracted using ethyl acetate (60 ml). Combined ethyl acetate layers are washed with brine. Finally crude product (3.1 g; 89.8%) is isolated by evaporation of solvent under reduced pressure.Purity: 99.5%

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

Reference£º
Patent; Ramanjaneyulu, Gorantla Seeta; Mohan, Bandari; Ray, Purna Chandra; Sethi, Madhuresh Kumar; Rawat, Vijendra Singh; Krishna, Yerramalla Raja; Lakshminarayana, Vemula; Srinivas, Mamidi; US2009/281327; (2009); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Analyzing the synthesis route of 144690-92-6

144690-92-6 Triphenyl methyl olmesartan 19036162, aDioxole compound, is more and more widely used in various.

144690-92-6, Triphenyl methyl olmesartan is a Dioxole compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,144690-92-6

A solution of MTT in an organic solvent and water (20%) was heated for 4-8 hrs at reflux. When the solvents were either acetonitrile (ACN), isopropyl alcohol (IPA) or t-butanol (t-BuOH), 1 volume of water was added, and the reaction was stirred until the amount of MTT was less than 2%. The mixture was evaporated to dryness. Ethyl acetate (EtOAc, 1 volume) was added to the residue and then evaporated again (twice). The resulting solid was dissolved in EtOAc (12 vol) and heated to reflux. The solution was cooled (2 C.) and stirred for 2 hrs. The product was filtered, washed (EtOAc, 1 vol), and dried on vacuum (45 C.). Table 1 shows the process details with different organic solvents: TABLE 1 Total solvent Time Solvent(s) Volume Temperature ( C.) (hrs) pH ACN:H2O 5:1 + 1 85 7 4.89-4.3 IPA:H2O 5:1 + 1 85 7 4.62-4.25t-BuOH:H2O 5:1 + 1 85 7 4.78-4.28n-propanol:H2O 5:1 reflux 2.5 4.3n-BuOH:H2O 5:1 110 2.5 4.412-BuOH:H2O 5:1 100 3 4.5iso-penthanol:H2O 5:1 100 3 5DMA:H2O 5:1 100 4 4.5DMF:H2O 5:1 100 4 4.5

144690-92-6 Triphenyl methyl olmesartan 19036162, aDioxole compound, is more and more widely used in various.

Reference£º
Patent; Hedvati, Lilach; Pilarsky, Gideon; Shenkar-Garcia, Natalia; US2006/148870; (2006); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem