Chemistry involves the study of all things chemical – chemical processes, chemical compositions and chemical manipulation – in order to better understand the way in which materials are structured, how they change and how they react in certain situations. 51166-71-3, Name is 2,6-Di-O-methyl-β-cyclodextrin, SMILES is COC[C@@H]1[C@]2([H])[C@@H]([C@@H](OC)[C@](O[C@]3([H])[C@H](O[C@@](O[C@]4([H])[C@H](O[C@@](O[C@]5([H])[C@H](O[C@@](O[C@@]6([H])[C@H](O)[C@@H](OC)[C@@](O[C@@H]6COC)([H])O[C@@]7([H])[C@H](O)[C@@H](OC)[C@@](O[C@@H]7COC)([H])O[C@@]8([H])[C@H](O)[C@@H](OC)[C@@](O[C@@H]8COC)([H])O2)([H])[C@H](OC)[C@H]5O)COC)([H])[C@H](OC)[C@H]4O)COC)([H])[C@H](OC)[C@H]3O)COC)([H])O1)O, in an article , author is Celik, Mehmet A., once mentioned of 51166-71-3, Category: dioxoles.
1,3-Dioxole derivatives were synthesized from copper(II)-catalyzed cyclization reactions of carbonyl ylides derived from 3-methylenebicyclo[2.2.1]heptan-2-one and dimethyl diazomalonate. The reaction mechanisms leading to all possible products have been extensively investigated by density functional theory. The generally accepted mechanism proposed by Doyle(12) for the carbene transformation reactions were applied to this system for the first time to shed light on the reaction mechanism and to understand the catalytic activity of Cu(acac)(2). Calculations have shown that the reaction mechanisms leading to different products greatly depend on the conformations of copper-stabilized carbonyl ylides, which are treated as reactants in our calculations. The conformational effects and donor-acceptor type stabilizations between the catalyst and the carbonyl ylide observed in the reactants and the transition state geometries seem to be the main reasons for the observed product selectivity. Our theoretical results are in good agreement with the experimental results, and the calculations successfully predict the experimental 75:25 product distribution.
Category: dioxoles, The reactant in an enzyme-catalyzed reaction is called a substrate. Enzyme inhibitors cause a decrease in the reaction rate of an enzyme-catalyzed reaction.I hope my blog about 51166-71-3 is helpful to your research.
Reference:
1,3-Benzodioxole – Wikipedia,
,Dioxole | C3H4O2 – PubChem