Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.144690-92-6, molecula formula is Triphenyl methyl olmesartan, below Introduce a new synthetic route., 144690-92-6
Example 2: preparation of olmesartan medoxomil (I) as per the present invention: To a mixture of acetic acid ( 37.5 ml) and water (12.5 ml) was added trityl olmesartan medoxomil (III) (10 g) and heated at 40-45 C for 2 hours. Water (12.5 ml) was added and the reaction mixture was filtered to remove trityl alcohol. The filtrate was subjected to agitated thin film dryer, wherein the feed rate was of about 4 to 10 ml per minute, heating medium was jacketed hot water at 45-50 C and vacuum was 70-75 mm/Hg. Crude olmesartan medoxomil (I) was recovered form ATFD. HPLC purity: olmesartan medoxomil (I) (97.81 %); olmesartan acid impurity (II) (0.97%). To acetone (40 ml) crude olmesartan medoxomil (I) was added, the slurry was heated at 54-58 C for 30 minutes and then stirred for 1 -2 hours at 0-5 C, the solid was filtered. Wet solid was added to acetone (120 ml) and heated at 55-60C. The solution was filtered. From the filtrate about 95 ml of acetone was distilled out at atmospheric pressure. The concentrated mass was stirred at 25-30 C for 8-12 hours and then at 0-5 C for 1 -3 hours. The solid was filtered, washed with acetone and dried. Yield 5.3 g (76.81 %). HPLC purity: olmesartan medoxomil (I) (99.67 %); olmesartan acid impurity (II) (0.07%).
A chemical reaction often occurs in steps, although it may not always be obvious to an observer.
Reference£º
Patent; LUPIN LIMITED; FIRKE, Rajendra, Viswanath; SISODIA, Ujjwal,Komalsingh; BHANGALE, Chandrakant,Shriram; SHIVDAVKAR, Radhakrishna, Bhikaji; GODBOLE, Himanshu, Madhav; SINGH, Girij, Pal; WO2013/21312; (2013); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem