Downstream synthetic route of Triphenyl methyl olmesartan

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Triphenyl methyl olmesartan, 144690-92-6

144690-92-6, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Triphenyl methyl olmesartan, cas is 144690-92-6,the Dioxole compound, it is a common compound, a new synthetic route is introduced below.

Example 8; To a solution of (5-Methyl-2-oxo-1,3-dioxolen-4-yl)methyl-4-(1-hydroxy-1-methyl ethyl)-2-propyl-1-{4-[2-(trityltetrazol-5-yl)phenyl]phenyl}methylimidazole-5-carboxylate (5.0 g; 6.25 mmol) and toluene (20 ml) at 15-20 C. is added hydrochloric acid (30 ml). Reaction mass is stirred at 15-20 C. for about 15 minutes to 4 hours. The reaction is monitored by TLC. After completion of reaction layers are separated. Aqueous layer is washed with toluene (10 ml). Adjusted the pH of the aqueous layer to 5-6 using aqueous potassium carbonate solution (200 ml) and the compound is extracted using ethyl acetate (60 ml). Combined ethyl acetate layers are washed with brine. Finally crude product (3.1 g; 89.8%) is isolated by evaporation of solvent under reduced pressure.Purity: 99.5%

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Triphenyl methyl olmesartan, 144690-92-6

Reference£º
Patent; Ramanjaneyulu, Gorantla Seeta; Mohan, Bandari; Ray, Purna Chandra; Sethi, Madhuresh Kumar; Rawat, Vijendra Singh; Krishna, Yerramalla Raja; Lakshminarayana, Vemula; Srinivas, Mamidi; US2009/281327; (2009); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem