Extracurricular laboratory: Synthetic route of 80841-78-7

As the rapid development of chemical substances, we look forward to future research findings about 80841-78-7

4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, cas is 80841-78-7, it is a common heterocyclic compound, the Dioxole compound, its synthesis route is as follows.

In 130 ml of N,N-dimethyl acetamide, 14.5 g (20 mmol) of potassium 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2′-(1-trityl-1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylate, 3.0 g (2.2 mmol) of potassium carbonate powder and 1.4 g (8.4 mmol) of potassium iodide were added. The mixture was cooled to 0 C and 5.0 g (33 mmol) of 4-(chloromethyl)-5-methyl-1,3-dioxol-2-one was added at 0 to 5C. After the addition, the reaction mixture was warmed to 40-45 C within one hour, then the mixture was stirred at this temperature for 2h. The sample of reaction mixture was analysed (HPLC; tritylolmesartan medoxomil, 97.44%, 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2′-(1-trityl-1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylate 0.06 %). The mixture was cooled to 10 to 20C and then 250 ml of ethyl acetate was added. The mixture was cooled again to 5-10 C and then 200 ml of 10% NaCl was added slowly. The temperature should not be higher than 25 C during the addition. The phases were mixed separated and organic phase was washed with 100 ml of 10% NaCl (2*) and dried over anhydrous sodium sulphate. After the filtration filtrate was evaporated under reduced pressure at temperature under 45C to oily residue. To the residue 30 ml of acetonitrile was added at temperature not more than 45C. The mixture was stirred at this temperature for 10 minutes then was cooled to 20 to 25C and stirred at this temperature for 0.5 h and after that 3h at 0 to 5C. The suspension was filtered, washed with cold acetonitrile and dried at 40 to 50C. Yield: 17.0 g (91%) HPLC: 99.64 % of the product, all other impurities under 0.1%. IR: 3408, 1818, 1805, 1741, 1681, 1529, 1148, 1002, 699

As the rapid development of chemical substances, we look forward to future research findings about 80841-78-7

Reference£º
Patent; Krka Tovarna Zdravil, D.D., Novo Mesto; EP2334668; (2011); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Application of 1-Phenylimidazolidin-2-one

As the rapid development of chemical substances, we look forward to future research findings about 80841-78-7

A common heterocyclic compound, the Dioxole compound, name is 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one,cas is 80841-78-7, mainly used in chemical industry, its synthesis route is as follows.

To BIC (110 g, 1 eq) was added acetone (385 mL, 3.5 vol) at 25C – 30C, and the mixture was dissolved by stirring for 5 min. Sodium carbonate (20.85 g, 1.3 eq) and potassium iodide (0.25 g, 0.01) were added, and the mixture was stirred for 10 min. A solution of 4-chloromethyl-5-methyl-2-oxo-1,3-dioxolene (31.456 g, 1.4 eq) in acetone (165 mL, 1.5 vol) was added thereto. The reaction mixture was heated to 45C – 50C, and stirred at the same temperature for 12 hr. Using TLC (thin layer chromatography) (TLC eluent: 10% methanol/methylene chloride, detection method: UV), complete disappearance of BIC was confirmed. The reaction mixture was cooled to 25C – 30C. Then, the solvent contained in the reaction mixture was evaporated under reduced pressure at 40C – 45C. To the obtained residue were added 10% brine (550 mL, 5 vol) and toluene (550 mL, 5 vol). Furthermore, the mixture was adjusted to pH 7 – 8 by adding 5% hydrochloric acid (33 mL), stirred for 10 min, left standing for 5 min and partitioned. The aqueous layer was extracted with toluene (2×330 mL, 2×3 vol). The extracts were combined with the organic layer, 10% brine (550 mL, 5 vol) was added, and the mixture was stirred for 5 min, left standing for 45 min, partitioned, and concentrated under reduced pressure at 40C – 45C to give TOLM (110 g, 90%). [0306] To the obtained TOLM was added acetone (110 mL, 1 vol), and the mixture was stirred at 25C – 30C for 30 min. n-Heptane (440 mL, 4 vol) was added, and the mixture was cooled to 5C – 10C and stirred at 5C – 10C for 30 min, whereby precipitation of a solid was confirmed. The solid (80 g, 66%) was collected by filtration, and blast dried. To the obtained solid was added isopropyl alcohol (400 mL, 5 vol), and the mixture was heated to 50C – 55C and stirred at 50C – 55C for 1 hr. Then, the mixture was cooled to 25C – 30C, and stirred at 25C – 30C for 1 hr. The resulting solid was filtered and suction-filtered for 10 min to give TOLM (76 g, 62%).

As the rapid development of chemical substances, we look forward to future research findings about 80841-78-7

Reference£º
Patent; API Corporation; SEKI, Masahiko; EP2891650; (2015); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Downstream synthetic route of 80841-78-7

The synthetic route of 80841-78-7 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.80841-78-7,4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one,as a common compound, the synthetic route is as follows.

Example 1; Preparation of olmesartan medoxomilTo dimethyl acetamide (300 ml) was added 4-(1-hydroxy-1-methylethyl)-2-propyl imidazol- 5-carboxylic acid ethyl ester (50 gms) and powdered sodium hydroxide (26 gms). To this, 4-[2-(trityltetrazol-5-yl)phenyl]benzyl bromide (135 gms) was charged at 45-500C. The contents were stirred for 5 hours at 45-500C. Diisopropylethyl amine (100 ml) was charged to the reaction mass at 40-450C. A solution of 5-methyl-2-oxo-1 , 3-dioxane-4-yl)methyl chloride (80 gms) diluted with dimethyl acetamide (160 ml) was slowly added to the reaction mass at 40-450C over a period of 1 hour. The contents were heated to 60-650C and maintained for 4 hours. The reaction mass was then cooled to 30-350C and neutralized with concentrated hydrochloride acid. The reaction mass was filtered to remove inorganic impurities, charcoalized using charcoal (10 gms) andstirred for 30 minutes at 40-450C. The reaction mass was filtered over hyflo. The clear filtrate was acidified with hydrochloric acid (100 ml) slowly at 25-30C. The contents were stirred at 60C for 1 hour. The reaction mass was chilled to 0-5C and filtered to remove tritanol. The reaction mass was concentrated under reduced pressure. The residue was quenched with water (500ml), neutralized with base and extracted in dichloromethane (500 ml). The clear dichloromethane extract was then concentrated under reduced pressure and stripped off with acetone. The residue thus obtained was isolated from acetone (250 ml) to give 55 gms of the title compound. Chromatographic purity- > 99%; Example 2Preparation of olmesartan medoxomilTo dimethyl acetamide (600 ml) was added 4-(1-hydroxy-1-methylethyl)-2-propyl imidazol- 5-carboxylic acid ethyl ester (100 gms) and powdered potassium hydroxide (50 gms). To this was charged 4-[2-(trityltetrazol-5-yl)phenyl]benzyl bromide (270 gms) at 45-50C. The contents were stirred for 5 hours at 45-50C. Diisopropylethyl amine (200 ml) was charged to the reaction mass at 40-450C. To this was slowly added a solution of 5-methyl-2-oxo- 1 ,3-dioxane-4-yl)methyl chloride (160 gms) diluted with dimethyl acetamide (320 ml) at 40- 45C over a period of 1 hour. The contents were heated to 60-650C and maintained for 4 hours. The reaction mass was then cooled to 30-350C and was neutralized with concentrated hydrochloride acid. The reaction mass was filtered to remove inorganic impurities. The reaction mass was charcoalized using charcoal (20 gms) and was stirred for 30 minutes at 40-450C. The reaction mass was filtered over hyflo. The clear filtrate was acidified with hydrochloric acid (200 ml) slowly at 25-300C. The contents were stirred at 60C for 1 hour. The reaction mass was chilled to 0-50C and was filtered to remove tritanol. The reaction mass was concentrated under reduced pressure. The residue was quenched with water (1000 ml), neutralized with base and extracted in dichloromethane (1000 ml). The clear dichloromethane extract was then concentrated under reduced pressure, stripped off with acetone. The residue thus obtained was isolated from the acetone (500 ml) to give 110 gms of the title compound. Chromatogrphic purity- > 99%; Example 4Preparation of trityl olmesartan medoxomilTo dimethyl acetamide (300 ml) was added 4-(1-hydroxy-1-methylethyl)-2-propyl imidazol- 5-carboxylic acid ethyl ester (50 gms) and powdered potassium hydroxide (25 gms). To this was charged 4-[2-(trityltetrazol-5-yl)phenyl]benzyl bromide (135 gms) at 45-500C. The contents were stirred for 5 hours at 45-500C. Diisopropylethyl amine (100 ml) was charged to the reaction mass at 40-45C. To this was slowly added a solution of 5-methyl-2-oxo- 1 ,3-dioxane-4-yl) methyl chloride (80 gms) diluted with dimethyl acetamide (160 ml) at 40- 45C over a period of 1 hour. The contents were heated to 60-650C and maintained for 4 hours. The reaction mass was then cooled to 30-350C. and was neutralized with concentrated hydrochloride acid. The reaction mass was filtered to remove inorganics. The reaction mass was charcoalized using charcoal (10 gms) and was stirred for 30 minutes at 40-450C. The reaction mass was filtered over hyflo. The clear filtrate was quenched with purified water(200 ml)at 25-30C over a period of 3-4 hours. The contents were stirred at 25-300C for 30 minutes. Crude trityl olmesartan medoxomil was isolated by filtration, slurried in water (500 ml), centrifuged and dried under reduced pressure at 45-50C.

The synthetic route of 80841-78-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; CIPLA LIMITED; CURTIS, Philip, Anthony; WO2008/43996; (2008); A2;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Introduction of a new synthetic route about 80841-78-7

With the rapid development of chemical substances, we look forward to future research findings about 80841-78-7

4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, cas is 80841-78-7, it is a common heterocyclic compound, the Dioxole compound, its synthesis route is as follows.

10L autoclave, 520g (0.75mol) Compound 5, DMF3kg, potassium carbonate and 215.3g (1.6mol), stirred at room temperature 1.5-2.5h added to the system after 63.0g (0.38mol) of potassium iodide was added dropwise while – Chloromethyl -5-methyl-1,3-dioxol-2-one 40.0g (0.94mol). Dropping was completed, the reaction at room temperature after 3-4h TLC or HPLC in control, raw reaction was complete. To the system was added ethyl acetate and 3L 3L water and 200g of sodium chloride, stirring separated and the aqueous layer was washed with 3X1L ethyl acetate, the combined organic layers, the organic layer was dried, filtered and the solvent was evaporated cooling is added 0-10 , methanol was added 1600g beating 30min, filtered, then the filter cake was slurried at room temperature in acetonitrile 1600g 30min, filtered to afford intermediate 6 about 553.8g,

With the rapid development of chemical substances, we look forward to future research findings about 80841-78-7

Reference£º
Patent; Jiangsu Bang Pharmaceutical Co., Ltd.; Zhao, Guangrong; Huan, Shuang; Zhao, Huayang; Liu, Liping; Chen, Guoping; Tang, Jingyu; (19 pag.)CN105481842; (2016); A;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Application of (S)-(1-Ethylpyrrolidin-2-yl)methanamine

As the rapid development of chemical substances, we look forward to future research findings about 80841-78-7

The Dioxole compound, cas is 80841-78-7 name is 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, mainly used in chemical industry, its synthesis route is as follows.

Example 1; Preparation of olmesartan medoxomilTo dimethyl acetamide (300 ml) was added 4-(1-hydroxy-1-methylethyl)-2-propyl imidazol- 5-carboxylic acid ethyl ester (50 gms) and powdered sodium hydroxide (26 gms). To this, 4-[2-(trityltetrazol-5-yl)phenyl]benzyl bromide (135 gms) was charged at 45-500C. The contents were stirred for 5 hours at 45-500C. Diisopropylethyl amine (100 ml) was charged to the reaction mass at 40-450C. A solution of 5-methyl-2-oxo-1 , 3-dioxane-4-yl)methyl chloride (80 gms) diluted with dimethyl acetamide (160 ml) was slowly added to the reaction mass at 40-450C over a period of 1 hour. The contents were heated to 60-650C and maintained for 4 hours. The reaction mass was then cooled to 30-350C and neutralized with concentrated hydrochloride acid. The reaction mass was filtered to remove inorganic impurities, charcoalized using charcoal (10 gms) andstirred for 30 minutes at 40-450C. The reaction mass was filtered over hyflo. The clear filtrate was acidified with hydrochloric acid (100 ml) slowly at 25-30C. The contents were stirred at 60C for 1 hour. The reaction mass was chilled to 0-5C and filtered to remove tritanol. The reaction mass was concentrated under reduced pressure. The residue was quenched with water (500ml), neutralized with base and extracted in dichloromethane (500 ml). The clear dichloromethane extract was then concentrated under reduced pressure and stripped off with acetone. The residue thus obtained was isolated from acetone (250 ml) to give 55 gms of the title compound. Chromatographic purity- > 99%; Example 2Preparation of olmesartan medoxomilTo dimethyl acetamide (600 ml) was added 4-(1-hydroxy-1-methylethyl)-2-propyl imidazol- 5-carboxylic acid ethyl ester (100 gms) and powdered potassium hydroxide (50 gms). To this was charged 4-[2-(trityltetrazol-5-yl)phenyl]benzyl bromide (270 gms) at 45-50C. The contents were stirred for 5 hours at 45-50C. Diisopropylethyl amine (200 ml) was charged to the reaction mass at 40-450C. To this was slowly added a solution of 5-methyl-2-oxo- 1 ,3-dioxane-4-yl)methyl chloride (160 gms) diluted with dimethyl acetamide (320 ml) at 40- 45C over a period of 1 hour. The contents were heated to 60-650C and maintained for 4 hours. The reaction mass was then cooled to 30-350C and was neutralized with concentrated hydrochloride acid. The reaction mass was filtered to remove inorganic impurities. The reaction mass was charcoalized using charcoal (20 gms) and was stirred for 30 minutes at 40-450C. The reaction mass was filtered over hyflo. The clear filtrate was acidified with hydrochloric acid (200 ml) slowly at 25-300C. The contents were stirred at 60C for 1 hour. The reaction mass was chilled to 0-50C and was filtered to remove tritanol. The reaction mass was concentrated under reduced pressure. The residue was quenched with water (1000 ml), neutralized with base and extracted in dichloromethane (1000 ml). The clear dichloromethane extract was then concentrated under reduced pressure, stripped off with acetone. The residue thus obtained was isolated from the acetone (500 ml) to give 110 gms of the title compound. Chromatogrphic purity- > 99%; Example 4Preparation of trityl olmesartan medoxomilTo dimethyl acetamide (300 ml) was added 4-(1-hydroxy-1-methylethyl)-2-propyl imidazol- 5-carboxylic acid ethyl ester (50 gms) and powdered potassium hydroxide (25 gms). To this was charged 4-[2-(trityltetrazol-5-yl)phenyl]benzyl bromide (135 gms) at 45-500C. The contents were stirred for 5 hours at 45-500C. Diisopropylethyl amine (100 ml) was charged to the reaction mass at 40-45C. To this was slowly added a solution of 5-methyl-2-oxo- 1 ,3-dioxane-4-yl) methyl chloride (80 gms) diluted with dimethyl acetamide (160 ml) at 40- 45C over a period of 1 hour. The contents were heated to 60-650C and maintained for 4 hours. The reaction mass was then cooled to 30-350C. and was neutralized with concentrated hydrochloride acid. The reaction mass was filtered to remove inorganics. The reaction mass was charcoalized using charcoal (10 gms) and was stirred for 30 minutes at 40-450C. The reaction mass was filtered over hyflo. The clear filtrate was quenched with purified water(200 ml)at 25-30C over a period of 3-4 hours. The contents were stirred at 25-300C for 30 minutes. Crude trityl olmesartan medoxomil was isolated by filtration, slurried in water (500 ml), centrifuged and dried under reduced pressure at 45-50C.

As the rapid development of chemical substances, we look forward to future research findings about 80841-78-7

Reference£º
Patent; CIPLA LIMITED; CURTIS, Philip, Anthony; WO2008/43996; (2008); A2;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Analyzing the synthesis route of 80841-78-7

80841-78-7 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one 9855518, aDioxole compound, is more and more widely used in various.

80841-78-7, 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one is a Dioxole compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Example 7; Preparation of Trityl Olmesartan Medoxomil4-(1-Hydroxy-1-methylethyl)-2-propyl-1-{4-[2-(trityltetrazol-5-yl)phenyl]phenyl}methylimidazole-5-carboxylic acid dehydrate (100 g) was suspended in acetone (1 L) & heated to reflux; the solution obtained was added to suspension of potassium carbonate (15 g), potassium iodide (6 g) & 4-chloromethyl-5-methyl-1,3-dioxol-2-one (35 g) in acetone (500 mL) at reflux temperature. Reaction mass was refluxed for 2-6 hrs. After competition of reaction, the reaction mass was filtered & the acetone was distilled from combined mother liquor. The residue obtained was dissolved in toluene (1 L) toluene layer was washed with brine (3¡Á250 mL). Toluene was removed under reduced pressure & residue thus obtained was recrystallized from methanol to give trityl OlmesartanMedoxomil (100 g).HPLC purity=99.5%

80841-78-7 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one 9855518, aDioxole compound, is more and more widely used in various.

Reference£º
Patent; Ramanjaneyulu, Gorantla Seeta; Mohan, Bandari; Ray, Purna Chandra; Sethi, Madhuresh Kumar; Rawat, Vijendra Singh; Krishna, Yerramalla Raja; Lakshminarayana, Vemula; Srinivas, Mamidi; US2009/281327; (2009); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Some tips on 80841-78-7

As the paragraph descriping shows that 80841-78-7 is playing an increasingly important role.

80841-78-7, 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one is a Dioxole compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Example 2; 36.0 g (50.3 mmol) ethyl 4-(1-hydroxy-1-methylethyl)-2-propyl-1-(4-[2-(trityltetrazol-5-yl)-phenyl]phenyl}-methyl imidazole-5-carboxylate (Va) and 3.0 g (75.4 mmol) of NaOH were suspended in 413 ml dimethylacetamide. The suspension was then stirred at room temperature for 20 h and after that 6.9 g (50.3 mmol) of K2CO3 were added. The mixture was cooled to 0C and solution of 15.4 g (70.4 mmol) 4-chloromethyl-5-methyl-2-oxo-1,3-dioxolene in 39 ml of dimethylacetamide were slowly added. The mixture was slowly heated to 50C and stirred at this temperature for 2 h. After esterification was completed, the mixture was cooled to 10 C and poured into a mixture of 625 ml of ethyl acetate and 625 ml of 10 % NaCl, and stirred at 25 C for 15 min. The phases were separated and organic phase was washed 2x with 500 ml of 10 % NaCl, dried over Na2SO4 and filtered. The filtrate was concentrated up to ? (approximately 270 g) at reduced pressure. To the resulting solution, 80 ml of ethanol and 8.3 ml (100 mmol) of conc. HCl were added and stirred at 24-26C for 3h. To the cooled mixture 600 ml of water was added and pH of the suspension was estimated to 5 by addition of 5 M NaOH. The phases were stirred for 15 min and separated. Water phase was reextracted with 150 ml of ethyl acetate. Collected organic phases were dried over Na2SO4, filtered and concentrated under reduced pressure. 560 ml of ethyl acetate were added and the mixture was evaporated again. After that, 300 ml of ethyl acetate were added and the mixture was cooled to 20 C and stirred for 1h, filtered off and washed with 20 ml of fresh ethyl acetate. The yield of the product (I) was 21 g (75 %).

As the paragraph descriping shows that 80841-78-7 is playing an increasingly important role.

Reference£º
Patent; KRKA, tovarna zdravil, d.d., Novo mesto; EP1816131; (2007); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Downstream synthetic route of 80841-78-7

The synthetic route of 80841-78-7 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.80841-78-7,4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one,as a common compound, the synthetic route is as follows.

To a solution of the compound of Formula IV (5.0 g) in toluene (40 mL), dimethylacetamide (10 mL) is added, followed by addition of sodium hydroxide (1.2 g) and N,N-diisopropylamine (3.7 g) at 25-35C. The mixture is stirred at 40- 45C for 4 hours. 5-Methyl-2-oxo-(1 ,3-dioxolene-4-yl)methyl chloride (1.5 g) and tetrabutylammonium bromide (0.5 g) are added at 40-450C. The mixture is stirred at 60-70C for 8 hours. The mass is cooled to 25-35C, water (50 mL) is added, and the pH is adjusted to about 6-7 by adding 10% aqueous HCI. The layers are separated. The aqueous layer is extracted with toluene (25 mL). The organic layers are combined and washed with water (25 mL). The solvent is distilled under reduced pressure. Methanol (25 mL) is added to the residue. The mixture is cooled to 0-50C and stirred at that temperature for 45 minutes. The formed solid is filtered, washed with methanol (10 mL) and dried for 45 minutes under vacuum (yield 3.0 g).

The synthetic route of 80841-78-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; DR. REDDY’S LABORATORIES LTD.; DR. REDDY’S LABORATORIES, INC.; KOLLA, Naveen Kumar; MANNE, Nagaraju; NAREDLA, Anitha; SHINDE, Sachin Gulabrao; WO2011/14611; (2011); A2;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Simple exploration of 80841-78-7

As the paragraph descriping shows that 80841-78-7 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.80841-78-7,4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one,as a common compound, the synthetic route is as follows.

Example 5; Preparation of trityl olmesartan medoxomilTo dimethyl sulphoxide (800 ml), sodium hydroxide powder (50 gms) was added under nitrogen atmosphere and stirred at 20-250C for 10 minutes. To this, 4-( 1 -hydroxy- 1- methylethyl)-2-propyl-imidazole-5-ethyl carboxylate (100 gms) was added at 20-250C. 5- (4′-bromomethyl-biphenyl)-2-yl-1 -trityl tetrazole (270 gms) was added slowly at 20-250C, and the reaction mass was stirred at 20-250C for 12 hours. Further 10% sodium hydroxide solution (100 ml) was added to the reaction mass at 20-250C. The temperature of the reaction mass was raised to 40-450C, the contents stirred at 40-450C for 2 hours and 5- methyl-2-oxo-1 ,3-dioxane-4-yl)methyl chloride (160 gms) was added slowly at 45-5O0C over a period of 45 minutes. The contents were stirred at 45-5O0C for 2 hours. The reaction mass was then cooled to 0-50C, stirred for 1 hour at 0-50C, filtered and slurried in water (1.0 It) at 40-450C for 1 hour, filtered at 4O0C and dried at 4O0C. To the dried material, ethyl acetate (2.5 It) was added, heated to 50-550C for complete dissolution, ethyl acetate was distilled off to 1.0 It stage under vacuum at 45-5O0C. The contents were cooled to 0-50C, stirred at 0-50C for 3 hours, filtered, washed with chilled methanol (100 ml) and dried under vacuum at 40-450C to give 250 gms of the title compound. Purity by HPLC : > 99%

As the paragraph descriping shows that 80841-78-7 is playing an increasingly important role.

Reference£º
Patent; CIPLA LIMITED; CURTIS, Philip, Anthony; WO2008/43996; (2008); A2;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Analyzing the synthesis route of 80841-78-7

80841-78-7 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one 9855518, aDioxole compound, is more and more widely used in various.

80841-78-7, 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one is a Dioxole compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To BIC (110 g, 1 eq) was added acetone (385 mL, 3.5 vol) at 25C – 30C, and the mixture was dissolved by stirring for 5 min. Sodium carbonate (20.85 g, 1.3 eq) and potassium iodide (0.25 g, 0.01) were added, and the mixture was stirred for 10 min. A solution of 4-chloromethyl-5-methyl-2-oxo-1,3-dioxolene (31.456 g, 1.4 eq) in acetone (165 mL, 1.5 vol) was added thereto. The reaction mixture was heated to 45C – 50C, and stirred at the same temperature for 12 hr. Using TLC (thin layer chromatography) (TLC eluent: 10% methanol/methylene chloride, detection method: UV), complete disappearance of BIC was confirmed. The reaction mixture was cooled to 25C – 30C. Then, the solvent contained in the reaction mixture was evaporated under reduced pressure at 40C – 45C. To the obtained residue were added 10% brine (550 mL, 5 vol) and toluene (550 mL, 5 vol). Furthermore, the mixture was adjusted to pH 7 – 8 by adding 5% hydrochloric acid (33 mL), stirred for 10 min, left standing for 5 min and partitioned. The aqueous layer was extracted with toluene (2×330 mL, 2×3 vol). The extracts were combined with the organic layer, 10% brine (550 mL, 5 vol) was added, and the mixture was stirred for 5 min, left standing for 45 min, partitioned, and concentrated under reduced pressure at 40C – 45C to give TOLM (110 g, 90%). [0306] To the obtained TOLM was added acetone (110 mL, 1 vol), and the mixture was stirred at 25C – 30C for 30 min. n-Heptane (440 mL, 4 vol) was added, and the mixture was cooled to 5C – 10C and stirred at 5C – 10C for 30 min, whereby precipitation of a solid was confirmed. The solid (80 g, 66%) was collected by filtration, and blast dried. To the obtained solid was added isopropyl alcohol (400 mL, 5 vol), and the mixture was heated to 50C – 55C and stirred at 50C – 55C for 1 hr. Then, the mixture was cooled to 25C – 30C, and stirred at 25C – 30C for 1 hr. The resulting solid was filtered and suction-filtered for 10 min to give TOLM (76 g, 62%).

80841-78-7 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one 9855518, aDioxole compound, is more and more widely used in various.

Reference£º
Patent; API Corporation; SEKI, Masahiko; EP2891650; (2015); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem