New learning discoveries about 144690-92-6

The synthetic route of 144690-92-6 has been constantly updated, and we look forward to future research findings.

144690-92-6, Triphenyl methyl olmesartan is a Dioxole compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

21.6 g of triethylolmethane-containing methoxycinnamic acid (formula 1a), 3 g of hydroxylamine hydrochloride, 14 mL of acetone and 70 mL of ethanol were added to the reaction part, followed by stirring at 25 to 40 C for 4 hours. When the reaction was completed, the reaction solution was concentrated under reduced pressure. Ethyl acetate (80 mL) was added to the residue, and the mixture was stirred for 3 hours to precipitate crystals. The precipitated crystals were stirred at 20 to 25 C for 2 hours, filtered and washed with 20 mL of purified water. To the filtrate was added 40 mL of ethyl acetate, the temperature was cooled to 0 to 5 C, The pH of the filtrate was adjusted to pH 5.0 to 6.0 by adding 45 g of triethylamine to the filtrate, and crystals were slowly precipitated. The precipitated crystals were stirred at 0 to 5 C for 3 hours, filtered, washed with 30 mL of purified water and 30 mL of acetone, and dried under reduced pressure for 15 hours to obtain 12.3 g (yield 82%, purity 99.96%) of olmesartan methoxysilane (Formula 1b).

The synthetic route of 144690-92-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; DONGBANG FTL CO., LTD; Song, Tae Hong; Jung, Hun Suk; Jang, Do Yeon; Moon, Chung Sun; Jung, Hee Jung; (18 pag.)KR101526249; (2015); B1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Brief introduction of 144690-92-6

144690-92-6 Triphenyl methyl olmesartan 19036162, aDioxole compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.144690-92-6,Triphenyl methyl olmesartan,as a common compound, the synthetic route is as follows.

Trityl olmesartan medoxomil (8 g, 10 mmol) is dissolved in THF (25 ml) and diethyl ether (25 ml) and 48 % aqueous hydrobromic acid (3.5 ml, 30 mmol) is added. The mixture is stirred for 1 hour at room temperature and then 1 hour at 0 C. The precipitate is filtered, washed with cold THF (20 ml) and dried overnight in vacuum at room temperature to give 5.0 g of olmesartan medoxomil hydrobromide Form B

144690-92-6 Triphenyl methyl olmesartan 19036162, aDioxole compound, is more and more widely used in various.

Reference£º
Patent; LEK Pharmaceuticals d.d.; EP2022790; (2009); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Simple exploration of 144690-92-6

As the paragraph descriping shows that 144690-92-6 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.144690-92-6,Triphenyl methyl olmesartan,as a common compound, the synthetic route is as follows.

Example 8; Olmesartan medoxomil (V); Water (10 g) was added to a solution of the starting substance (III; 20 g) in acetone (50 ml), and the mixture was heated to a mild boil for 14 h. After the reaction was completed, the mixture was cooled to 0 0C, and the formed trityl alcohol was sucked off. After concentration, a crude product was obtained, which was extracted with ethyl acetate (70 ml). After evaporating the extract and crystallizing from acetone, 10.6 g (76 %) of the product with an HPLC purity of 97.0 % was obtained. Recrystallization from ethyl methyl ketone gave 10.2 g (73 %) of the product with an HPLC purity of 99.3 %; m.p. 175-177 C.

As the paragraph descriping shows that 144690-92-6 is playing an increasingly important role.

Reference£º
Patent; ZENTIVA, A.S.; WO2007/48361; (2007); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Brief introduction of 144690-92-6

144690-92-6 Triphenyl methyl olmesartan 19036162, aDioxole compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.144690-92-6,Triphenyl methyl olmesartan,as a common compound, the synthetic route is as follows.

Example 4; Olmesartan medoxomil (V); The starting substance (III; 10 g) was dissolved in acetone (50 ml), and, after adding water (25 g), the mixture was heated to a mild boil for 14 h. After evaporating acetone and adding ethyl acetate (50 ml), water was separated, and the organic layer was again washed with water (10 ml). The extract was concentrated and evaporated with toluene (50 ml) once more, the residue was dissolved in ethyl acetate (20 ml) and toluene (20 ml). The mixture was concentrated to 25 ml and allowed to crystallize under stirring for 30 min; after cooling to 15 C, the insoluble portion was sucked off and washed with ethyl acetate. 6.5 g of the product was obtained, which, after recrystallization from ethanol, gave 6 g (86 %) of the product with an HPLC purity of 98.7 %.By further recrystallization from ethyl acetate and cyclohexane, 5.1 g of a sample with an HPLC purity of 99.6 % was obtained. 1H NMR (250 MHz, CDCl3) delta: 0.82 (3H, t, J = 7.5 Hz); 1.50 (6H, s); 1.54-1.63 (2H, m); 2.07 (3H, s); 2.48 (2H, t, J = 7.5 Hz); 4.86 (2H, s); 5.32 (2H, s); 6.70 (2H, d, J = 8 Hz); 6.99 (2H, d, J = 8 Hz); 7.3-7.5 (3H, m); 7.72 (IH, dd, J = 1.7 Hz).

144690-92-6 Triphenyl methyl olmesartan 19036162, aDioxole compound, is more and more widely used in various.

Reference£º
Patent; ZENTIVA, A.S.; WO2007/48361; (2007); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Simple exploration of 144690-92-6

As the paragraph descriping shows that 144690-92-6 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.144690-92-6,Triphenyl methyl olmesartan,as a common compound, the synthetic route is as follows.

One hundred ml of methanol was added to 10 g of (5-methyl-2-oxo-l,3-dioxol- 4-yl) methyl 4-(2-hydroxypropan-2-yl)-2-propyl-l-((2′-(l-trityl-lH-tetrazol-5-yl) biphenyl-4-yl) methyl)-lH-imidazole-5-carboxylate (Pharmacostech). Then to the reaction mixture was added 10 g of resin pre-treated with hydrochloric acid of pH 2-3 (TRILUE SCR-IO gel type), followed by refluxing for 6 hours. The solid components were filtered out from the reaction mixture and washed with 100 ml of methanol. The solid substance obtained by vacuum distillation of the filter-in solution was dissolved into a small quantity of acetone, and n-hexane was added to the acetone solution to obtain 6.58 g (yield rate: 94%) of the standard compound represent by Formula 9: 1H NMR (300 MHz, DMSO), delta 7.50-7.69 (m, 4H), 7.03 (d, 2H, J=8.0 Hz), 6.85 (d, 2H, >8.0 Hz), 5.41 (s, 2H), 5.22 (s, IH), 5.05 (s, 2H), 2.50 (s, 2H), 2.07 (s, 3H).

As the paragraph descriping shows that 144690-92-6 is playing an increasingly important role.

Reference£º
Patent; PHARMACOSTECH CO., LTD.; KIM, Jae Won; CHA, Young Gwan; RYU, Hyung Chul; KIM, Sun Joo; WO2010/67913; (2010); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

 

Brief introduction of 144690-92-6

144690-92-6 Triphenyl methyl olmesartan 19036162, aDioxole compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.144690-92-6,Triphenyl methyl olmesartan,as a common compound, the synthetic route is as follows.

The reaction flask was charged with 400 g of compound VII (0.50 mol) and 70% aqueous acetic acid solution of 3200 ml, Reaction was carried out at 50 C for 2 hours. After the completion of the reaction, the solvent was concentrated and concentrated, and ammonia was added to the residue.PH = 7, extracted with 1400 ml of ethyl acetate, the ethyl acetate layer was washed with water, and finally with anhydrous sodium sulfateDried; filtered, the filtrate was concentrated to dryness and the residue was recrystallized from ethanol to give the compound I pure product 256.1G, yield: 91.79%.

144690-92-6 Triphenyl methyl olmesartan 19036162, aDioxole compound, is more and more widely used in various.

Reference£º
Patent; Hunan Ouya biological Co. Ltd.; Lin, kaizhao; (19 pag.)CN103304550; (2016); B;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

 

Some tips on 144690-92-6

As the paragraph descriping shows that 144690-92-6 is playing an increasingly important role.

144690-92-6, Triphenyl methyl olmesartan is a Dioxole compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Trityl olmesartan medoxomil (8 g, 10 mmol) is dissolved in THF (50 ml) and 48 % aqueous hydrobromic acid (3.5 ml, 30 mmol) is added. The mixture is stirred for 1 hour at room temperature and then 1 hour at 0 C. The precipitate is filtered, washed with cold THF (20 ml) and dried overnight in vacuum at room temperature to give 5.7 g of olmesartan medoxomil hydrobromide Form B (98.6 % area)

As the paragraph descriping shows that 144690-92-6 is playing an increasingly important role.

Reference£º
Patent; LEK Pharmaceuticals d.d.; EP2022790; (2009); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

 

Downstream synthetic route of 144690-92-6

The synthetic route of 144690-92-6 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.144690-92-6,Triphenyl methyl olmesartan,as a common compound, the synthetic route is as follows.

A solution of MTT in an organic solvent and water (20%) was heated for 4-8 hrs at reflux. When the solvents were either acetonitrile (ACN), isopropyl alcohol (IPA) or t-butanol (t-BuOH), 1 volume of water was added, and the reaction was stirred until the amount of MTT was less than 2%. The mixture was evaporated to dryness. Ethyl acetate (EtOAc, 1 volume) was added to the residue and then evaporated again (twice). The resulting solid was dissolved in EtOAc (12 vol) and heated to reflux. The solution was cooled (2 C.) and stirred for 2 hrs. The product was filtered, washed (EtOAc, 1 vol), and dried on vacuum (45 C.). Table 1 shows the process details with different organic solvents: TABLE 1 Total solvent Time Solvent(s) Volume Temperature ( C.) (hrs) pH ACN:H2O 5:1 + 1 85 7 4.89-4.3 IPA:H2O 5:1 + 1 85 7 4.62-4.25t-BuOH:H2O 5:1 + 1 85 7 4.78-4.28n-propanol:H2O 5:1 reflux 2.5 4.3n-BuOH:H2O 5:1 110 2.5 4.412-BuOH:H2O 5:1 100 3 4.5iso-penthanol:H2O 5:1 100 3 5DMA:H2O 5:1 100 4 4.5DMF:H2O 5:1 100 4 4.5

The synthetic route of 144690-92-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Hedvati, Lilach; Pilarsky, Gideon; Shenkar-Garcia, Natalia; US2006/148870; (2006); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

 

Simple exploration of 144690-92-6

As the paragraph descriping shows that 144690-92-6 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.144690-92-6,Triphenyl methyl olmesartan,as a common compound, the synthetic route is as follows.

Example 236.0 g (50.3 mmol) ethyl 4-(1-hydroxy-1-methylethyl)-2-propyl-1-{4-[2-(trityltetrazol-5-yl)-phenyl]phenyl}-methyl imidazole-5-carboxylate (Va) and 3.0 g (75.4 mmol) of NaOH were suspended in 413 ml dimethylacetamide. The suspension was then stirred at room temperature for 20 h and after that 6.9 g (50.3 mmol) of K2CO3, were added. The mixture was cooled to 0 C. and solution of 15.4 g (70.4 mmol) 4-chloromethyl-5-methyl-2-oxo-1,3-dioxolene in 39 ml of dimethylacetamide were slowly added. The mixture was slowly heated to 50 C. and stirred at this temperature for 2 h. After esterification was completed, the mixture was cooled to 10 C. and poured into a mixture of 625 ml of ethyl acetate and 625 ml of 10% NaCl, and stirred at 25 C. for 15 min. The phases were separated and organic phase was washed 2¡Á with 500 ml of 10% NaCl, dried over Na2SO4 and filtered. The filtrate was concentrated up to ? (approximately 270 g) at reduced pressure.To the resulting solution, 80 ml of ethanol and 8.3 ml (100 mmol) of conc. HCl were added and stirred at 24-26 C. for 3 h. To the cooled mixture 600 ml of water was added and pH of the suspension was estimated to 5 by addition of 5 M NaOH. The phases were stirred for 15 min and separated. Water phase was reextracted with 150 ml of ethyl acetate. Collected organic phases were dried over Na2SO4, filtered and concentrated under reduced pressure. 560 ml of ethyl acetate were added and the mixture was evaporated again. After that, 300 ml of ethyl acetate were added and the mixture was cooled to 20 C. and stirred for 1 h, filtered off and washed with 20 ml of fresh ethyl acetate. The yield of the product (I) was 21 g (75%).

As the paragraph descriping shows that 144690-92-6 is playing an increasingly important role.

Reference£º
Patent; KRKA; US2009/131680; (2009); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Brief introduction of 144690-92-6

144690-92-6 Triphenyl methyl olmesartan 19036162, aDioxole compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.144690-92-6,Triphenyl methyl olmesartan,as a common compound, the synthetic route is as follows.

Example 2: preparation of olmesartan medoxomil (I) as per the present invention: To a mixture of acetic acid ( 37.5 ml) and water (12.5 ml) was added trityl olmesartan medoxomil (III) (10 g) and heated at 40-45 C for 2 hours. Water (12.5 ml) was added and the reaction mixture was filtered to remove trityl alcohol. The filtrate was subjected to agitated thin film dryer, wherein the feed rate was of about 4 to 10 ml per minute, heating medium was jacketed hot water at 45-50 C and vacuum was 70-75 mm/Hg. Crude olmesartan medoxomil (I) was recovered form ATFD. HPLC purity: olmesartan medoxomil (I) (97.81 %); olmesartan acid impurity (II) (0.97%). To acetone (40 ml) crude olmesartan medoxomil (I) was added, the slurry was heated at 54-58 C for 30 minutes and then stirred for 1 -2 hours at 0-5 C, the solid was filtered. Wet solid was added to acetone (120 ml) and heated at 55-60C. The solution was filtered. From the filtrate about 95 ml of acetone was distilled out at atmospheric pressure. The concentrated mass was stirred at 25-30 C for 8-12 hours and then at 0-5 C for 1 -3 hours. The solid was filtered, washed with acetone and dried. Yield 5.3 g (76.81 %). HPLC purity: olmesartan medoxomil (I) (99.67 %); olmesartan acid impurity (II) (0.07%).

144690-92-6 Triphenyl methyl olmesartan 19036162, aDioxole compound, is more and more widely used in various.

Reference£º
Patent; LUPIN LIMITED; FIRKE, Rajendra, Viswanath; SISODIA, Ujjwal,Komalsingh; BHANGALE, Chandrakant,Shriram; SHIVDAVKAR, Radhakrishna, Bhikaji; GODBOLE, Himanshu, Madhav; SINGH, Girij, Pal; WO2013/21312; (2013); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem