Brief introduction of 707-61-9

Compounds in my other articles are similar to this one(4-Methyl-1-phenyl-2,3-dihydro-1H-phosphole 1-oxide)Product Details of 707-61-9, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: 4-Methyl-1-phenyl-2,3-dihydro-1H-phosphole 1-oxide( cas:707-61-9 ) is researched.Product Details of 707-61-9.O’Brien, Christopher J.; Nixon, Zachary S.; Holohan, Andrew J.; Kunkel, Stephen R.; Tellez, Jennifer L.; Doonan, Bryan J.; Coyle, Emma E.; Lavigne, Florie; Kang, Lauren J.; Przeworski, Katherine C. published the article 《Part I: The Development of the Catalytic Wittig Reaction》 about this compound( cas:707-61-9 ) in Chemistry – A European Journal. Keywords: Wittig reaction phosphole phospholane phosphate oxide preparation catalyst; Wittig reaction; alkenes; homogeneous catalysis; olefination; organocatalysis. Let’s learn more about this compound (cas:707-61-9).

The authors have developed the first catalytic (in phosphane) Wittig reaction (CWR). The utilization of an organosilane was pivotal for success as it allowed for the chemoselective reduction of a phosphane oxide. Protocol optimization evaluated the phosphane oxide pre-catalyst structure, loading, organosilane, temperature, solvent, and base. These studies demonstrated that to maintain viable catalytic performance it was necessary to employ cyclic phosphane oxide pre-catalysts of type 1. Initial substrate studies utilized sodium carbonate as a base, and further experimentation identified N,N-diisopropylethylamine (DIPEA) as a soluble alternative. The use of DIPEA improved the ease of use, broadened the substrate scope and decreased the pre-catalyst loading. The optimized protocols were compatible with alkyl, aryl, and heterocyclic (furyl, indolyl, pyridyl, pyrrolyl, and thienyl) aldehydes to produce both disubstituted and trisubstituted olefins in moderate-to-high yields (60-96%) by using a pre-catalyst loading of 4-10 mol%. Kinetic E/Z selectivity was generally 66:34. Complete (E)-selectivity for disubstituted α,β-unsaturated products was achieved through a phosphane-mediated isomerization event. The CWR was applied to the synthesis of a known precursor to the anti-Alzheimer drug donepezil hydrochloride, on a multi-gram scale (12.2 g, 74% yield). In addition, the described CWR is the only transition-metal-free/heavy-metal-free catalytic olefination process, excluding proton-catalyzed elimination reactions. The synthesis of the target compounds was achieved (1R,3S)-rel-3-methyl-1-phenylphospholane 1-oxide, (1R,3R)-rel-3-methyl-1-phenylphospholane 1-oxide, 1-phenylphospholane 1-oxide as catalyst precursors. 2-Phenyl-1,3,2-dioxaphospholane 2-oxide, diethylphenylphosphine oxide, 5-phenyl-5H-benzo[b]phosphindole 5-oxide, (2R,2’R,5R,5’R)-1,1′-(1,2-ethanediyl)bis[2,5-bis(1-methylethyl)phospholane], 2-[2-[(2R,5R)-2,5-dimethyl-1-phospholanyl]phenyl]-1,3-dioxolane were also evaluated.

Compounds in my other articles are similar to this one(4-Methyl-1-phenyl-2,3-dihydro-1H-phosphole 1-oxide)Product Details of 707-61-9, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference:
1,3-Benzodioxole – Wikipedia,
Dioxole | C3H4O2 – PubChem