Chemical engineers work across a number of sectors, processes differ within each of these areas, but chemistry and chemical engineering roles are found throughout, creation and manufacturing process of chemical products and materials. 51166-71-3, Name is 2,6-Di-O-methyl-β-cyclodextrin, SMILES is COC[C@@H]1[C@]2([H])[C@@H]([C@@H](OC)[C@](O[C@]3([H])[C@H](O[C@@](O[C@]4([H])[C@H](O[C@@](O[C@]5([H])[C@H](O[C@@](O[C@@]6([H])[C@H](O)[C@@H](OC)[C@@](O[C@@H]6COC)([H])O[C@@]7([H])[C@H](O)[C@@H](OC)[C@@](O[C@@H]7COC)([H])O[C@@]8([H])[C@H](O)[C@@H](OC)[C@@](O[C@@H]8COC)([H])O2)([H])[C@H](OC)[C@H]5O)COC)([H])[C@H](OC)[C@H]4O)COC)([H])[C@H](OC)[C@H]3O)COC)([H])O1)O, belongs to dioxole compound. In a document, author is Walker, O, introduce the new discover, Electric Literature of 51166-71-3.
A medium size and rigid molecule (2,3-naphto-1,3-dioxole) has been selected for this study because full anisotropic reorientation is expected and because its symmetry elements dictate the orientation of the rotation-diffusion tensor. NMR measurements include direct cross-relaxation rates (which yield the three rotation-diffusion coefficients by assuming the length of CH bonds) and remote cross-relaxation rates (which, by using these rotation-diffusion coefficients, yield distances between a given carbon and remote protons). Two different solvents have been used: carbon disulfide and dimethyl sulfoxide, In both solvents, the same type of reorientation anisotropy is observed although with different ratios of rotation-diffusion coefficient values, presumably due to specific intermolecular interactions undergone by the dioxole ring. This would also explain geometrical variations at the level of this moiety. (C) 2002 Published by Elsevier Science B.V.
Electric Literature of 51166-71-3, The reactant in an enzyme-catalyzed reaction is called a substrate. Enzyme inhibitors cause a decrease in the reaction rate of an enzyme-catalyzed reaction.I hope my blog about 51166-71-3 is helpful to your research.
Reference:
1,3-Benzodioxole – Wikipedia,
,Dioxole | C3H4O2 – PubChem