Derivation of elementary reaction about Triphenyl methyl olmesartan

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps.

144690-92-6, The molecularity is the number of molecules that collide during that step in the mechanism. If only a single reactant molecule in an elementary reaction, that step is designated as unimolecular; if there are two reactant molecules, it is bimolecular.144690-92-6. A new synthetic method of this compound is introduced below.

Trityl olmesartan medoxomil (8 g, 10 mmol) is added to a mixture of acetone (35 ml) and water (10 ml). To the resulting suspension 37 % aqueous hydrochloric acid (2.5 ml, 30 mmol) is added. The mixture is then stirred at room temperature for 4 h. Water (130 ml) is added and the mixture is stirred for additional 30 minutes. The precipitated triphenylmethanol is filtered off. The filtrate is concentrated in vacuum at 40 C to 100 ml, and then stirred vigorously for 1 h at room temperature and then additional 30 minutes at 0 C. The precipitate is filtered to give 4.7 g of olmesartan medoxomil hydrochloride Form A (98.3 % area)

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps.

Reference£º
Patent; LEK Pharmaceuticals d.d.; EP2022790; (2009); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem