Some tips on 80841-78-7

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products. The stepwise changes are collectively called the reaction mechanism.

The molecularity is the number of molecules that collide during that step in the mechanism. If only a single reactant molecule in an elementary reaction, that step is designated as unimolecular; if there are two reactant molecules, it is bimolecular.80841-78-7. A new synthetic method of this compound is introduced below., 80841-78-7

Example 3; Trityl olmesartan medoxomil (III); A solution of potassium salt 4 in methyl ethyl ketone from the preceding experiment (ca. 20 g of the salt) was diluted with methyl ethyl ketone (290 ml), and, after adding potassium iodide (2 g) and 4-chloromethyl-5-methyl-l,3-dioxol-2-one (7 g), the mixture was stirred at 50 0C for 7.5 h. After the reaction was completed, the mixture was filtered, and the filtrate was washed with methyl ethyl ketone (3 x 50 ml). After concentrating to ca. 160 ml in vacuo, ethanol (250 ml) was added, and the reaction mixture was again concentrated to ca. 300 ml in vacuo.The concentrated product in ethanol was inoculated and stirred at 50 0C for 0.5 h, and after getting thicker, diluted with ethanol (50 ml) and cooled to 20 C. The precipitated product was sucked off, washed with ethanol (2 x 20 ml) and dried in a vacuum drier at 50 C. 14.4 g (86 %) of the product was obtained.

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products. The stepwise changes are collectively called the reaction mechanism.

Reference£º
Patent; ZENTIVA, A.S.; WO2007/48361; (2007); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

The origin of a common compound about Triphenyl methyl olmesartan

Elementary reactions that involve the simultaneous collision of more than three molecules are highly improbable and have never been observed experimentally.

Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.144690-92-6, molecula formula is Triphenyl methyl olmesartan, below Introduce a new synthetic route., 144690-92-6

Example 2: preparation of olmesartan medoxomil (I) as per the present invention: To a mixture of acetic acid ( 37.5 ml) and water (12.5 ml) was added trityl olmesartan medoxomil (III) (10 g) and heated at 40-45 C for 2 hours. Water (12.5 ml) was added and the reaction mixture was filtered to remove trityl alcohol. The filtrate was subjected to agitated thin film dryer, wherein the feed rate was of about 4 to 10 ml per minute, heating medium was jacketed hot water at 45-50 C and vacuum was 70-75 mm/Hg. Crude olmesartan medoxomil (I) was recovered form ATFD. HPLC purity: olmesartan medoxomil (I) (97.81 %); olmesartan acid impurity (II) (0.97%). To acetone (40 ml) crude olmesartan medoxomil (I) was added, the slurry was heated at 54-58 C for 30 minutes and then stirred for 1 -2 hours at 0-5 C, the solid was filtered. Wet solid was added to acetone (120 ml) and heated at 55-60C. The solution was filtered. From the filtrate about 95 ml of acetone was distilled out at atmospheric pressure. The concentrated mass was stirred at 25-30 C for 8-12 hours and then at 0-5 C for 1 -3 hours. The solid was filtered, washed with acetone and dried. Yield 5.3 g (76.81 %). HPLC purity: olmesartan medoxomil (I) (99.67 %); olmesartan acid impurity (II) (0.07%).

Elementary reactions that involve the simultaneous collision of more than three molecules are highly improbable and have never been observed experimentally.

Reference£º
Patent; LUPIN LIMITED; FIRKE, Rajendra, Viswanath; SISODIA, Ujjwal,Komalsingh; BHANGALE, Chandrakant,Shriram; SHIVDAVKAR, Radhakrishna, Bhikaji; GODBOLE, Himanshu, Madhav; SINGH, Girij, Pal; WO2013/21312; (2013); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Derivation of elementary reaction about Triphenyl methyl olmesartan

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products. The stepwise changes are collectively called the reaction mechanism.

144690-92-6, The molecularity is the number of molecules that collide during that step in the mechanism. If only a single reactant molecule in an elementary reaction, that step is designated as unimolecular; if there are two reactant molecules, it is bimolecular.144690-92-6. A new synthetic method of this compound is introduced below.

Example 1-6 (0333) (0334) A mixture of TOLM (0.6 g, 0.75 mmol), sulfuric acid (0.08 g, 0.82 mmol) and 1:1 water-containing acetic acid (2.6 mL, 4.3 vol) was stirred at 25 C. for 1 hr. The reaction mixture was filtered, and the obtained solid was washed with 1:1 water-containing acetic acid (6.0 mL, 10 vol). The filtrates were combined and adjusted to pH 4-5 by adding 25% aqueous sodium carbonate solution. The mixture was partitioned by adding methylene chloride (6.0 mL, 10 vol). The aqueous layer was extracted with methylene chloride (3¡Á5 mL). The organic layer was washed with water (2¡Á5 mL) and saturated brine (5 mL), and concentrated under reduced pressure. The concentrated residue was purified by silica gel column chromatography (5-6% methanol/methylene chloride) and recrystallized from acetonitrile to give OLM (0.45 g, yield 100%). (0335) melting point: 174.5 C.-175.2 C.; (0336) IR (KBr): numax=2969, 1831, 1706, 1475, 1226, 1134, 760 cm-1; (0337) 1H NMR (DMSO-d6): delta=7.70-7.63 (m, 2H), 7.59-7.52 (m, 2H). (0338) 7.04 (d, J=8 Hz, 2H), 6.85 (d, J=8.4 Hz, 2H), 5.42 (s, 2H), 5.21 (s, 1H), 5.05 (s, 2H), 2.60 (t, J=7.6 Hz, 2H), 2.07 (s, 3H), 1.60-1.55 (m, 2H), 1.47 (s, 6H), 0.87 (t, J=7.2 Hz, 3H); (0339) Mass: 559 [M+H]+.

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products. The stepwise changes are collectively called the reaction mechanism.

Reference£º
Patent; API CORPORATION; Seki, Masahiko; US2015/239854; (2015); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Extended knowledge of Triphenyl methyl olmesartan

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

One of the major reasons is to use measurements of the macroscopic properties of a system, the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level. 144690-92-6, introduce a new downstream synthesis route. 144690-92-6

(4) the C48 H44 N6 O6 AMST – 6, acetone, water, sulfuric acid added to the reactor, the temperature rising to 30 C reaction 2.5 hours, adding water, 30 C continue to reaction 1.5 hours or more, when the raw material to achwhich isve the requirement of lowering the temperature to 5 C stirring 1 or more hours, filtering the triphenyl methanol, the filter cake is washed with water; mother liquor up to 50 C, add sodium bicarbonate, stirring 1 hour, filtration products, the filter cake is washed with water, 50 C decompression drying 12 hours or more to constant weight, to obtain omay sha tanzhi thick; said C48 H44 N6 O6 AMST – 6, acetone, water, sulfuric acid and sodium bicarbonate and the mass ratio of 700:1400:: 2101.4: 194.7: 373.5; (5) the crude product of olmesartan medoxomil and acetone is added to the reaction in the bottle, heat to reflux to totally dissolve, filter press, distilling off acetone, lowering the temperature to -10 C crystallization, filtration, acetone washing, 50 C drying productC29 H30 N6 O6 Olmesartan medoxomil, the crude with olmesartan medoxomil mass ratio of olmesartan medoxomil 448.4: 6500;

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

Reference£º
Patent; Jiangxi Yong Tong Technology Co., Ltd.; Liu Zhongchun; (10 pag.)CN107311989; (2017); A;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Some tips on Triphenyl methyl olmesartan

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

The molecularity is the number of molecules that collide during that step in the mechanism. If only a single reactant molecule in an elementary reaction, that step is designated as unimolecular; if there are two reactant molecules, it is bimolecular.144690-92-6. A new synthetic method of this compound is introduced below., 144690-92-6

(4) the C48 H44 N6 O6 AMST – 6, acetone, water, sulfuric acid added to the reactor, the temperature rising to 30 C reaction 2.5 hours, adding water, 30 C continue to reaction 1.5 hours or more, when the raw material to achwhich isve the requirement of lowering the temperature to 5 C stirring 1 or more hours, filtering the triphenyl methanol, the filter cake is washed with water; mother liquor up to 50 C, add sodium bicarbonate, stirring 1 hour, filtration products, the filter cake is washed with water, 50 C decompression drying 12 hours or more to constant weight, to obtain omay sha tanzhi thick; said C48 H44 N6 O6 AMST – 6, acetone, water, sulfuric acid and sodium bicarbonate and the mass ratio of 700:1400:: 2101.4: 194.7: 373.5; (5) the crude product of olmesartan medoxomil and acetone is added to the reaction in the bottle, heat to reflux to totally dissolve, filter press, distilling off acetone, lowering the temperature to -10 C crystallization, filtration, acetone washing, 50 C drying productC29 H30 N6 O6 Olmesartan medoxomil, the crude with olmesartan medoxomil mass ratio of olmesartan medoxomil 448.4: 6500;

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

Reference£º
Patent; Jiangxi Yong Tong Technology Co., Ltd.; Liu Zhongchun; (10 pag.)CN107311989; (2017); A;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Discovery of 4,5-Dimethyl-1,3-dioxol-2-one

Elementary reactions that involve the simultaneous collision of more than three molecules are highly improbable and have never been observed experimentally.

An elementary termolecular reaction involves the simultaneous collision of three atoms, molecules, or ions.4,5-Dimethyl-1,3-dioxol-2-one, cas is 37830-90-3. Here is a downstream synthesis route of the compound 37830-90-3, 37830-90-3

PREPARATION 2 Preparation of 4-bromomethyl-5-methyl-1,3-dioxole-2-one According to the method described in Liebigs. Ann. Chem., 1977, 27-32 4,5-dimethyl-1,3-dioxole-2-one (500 mg, 4.38 mmol) and N-bromosuccinimide (0.78 g, 4.38 mmol) were heated under reflux in dry carbon tetrachloride in the presence of alpha-alpha’-azobisisobutyronitrile (7.5 mg) for 20 minutes. The reaction mixture was concentrated under reduced pressure to half the volume, and the precipitated solid was filtered by suction. After removing the solvent from the filtrate, the residue was analyzed by gas chromatography. The obtained mixture (792 mg), contained 70percent of the desired title compound and used for the subsequent reactions.

Elementary reactions that involve the simultaneous collision of more than three molecules are highly improbable and have never been observed experimentally.

Reference£º
Patent; Sawai Pharmaceutical Co., Ltd.; US5006548; (1991); A;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Extended knowledge of 4,5-Dimethyl-1,3-dioxol-2-one

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products. The stepwise changes are collectively called the reaction mechanism.

An elementary termolecular reaction involves the simultaneous collision of three atoms, molecules, or ions.4,5-Dimethyl-1,3-dioxol-2-one, cas is 37830-90-3. Here is a downstream synthesis route of the compound 37830-90-3, 37830-90-3

EXAMPLE 1 Preparation of 4-chloro-4-methyl-5-methylene-1,3-dioxolane-2-one (III) To a solution of 50 g of 4,5-dimethyl-1,3-dioxolene-2-one (IV)(Synthesised by the method described in Tetrahedron Letters, 1701-1704 (1972)) in 350 ml of methylene chloride was added 65 g of sulfuryl chloride dropwise over 1 hour at 40¡ã-42¡ã C. The mixture was stirred for one hour at the same temperature and then evaporated in vacuo to remove the solvent. The resulting residue was distilled in vacuo to obtain 42.1 g (65percent of theory) of 4-chloro-4-methyl-5-methylene-1,3-dioxolane-2-one (III) as a colorless oil. B.p. 45¡ã-48¡ã C./2 mmHg. IR(CHCl3)nu(cm-1): 1820, near 1695 etc. NMR(CDCl3, delta(ppm)): 2.19(3H, s, CH3), STR5

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products. The stepwise changes are collectively called the reaction mechanism.

Reference£º
Patent; Kanebo, Ltd.; US4554358; (1985); A;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

A new synthetic route of 37830-90-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand 4,5-Dimethyl-1,3-dioxol-2-one reaction routes.

An elementary termolecular reaction involves the simultaneous collision of three atoms, molecules, or ions.4,5-Dimethyl-1,3-dioxol-2-one, cas is 37830-90-3. Here is a downstream synthesis route of the compound 37830-90-3, 37830-90-3

37830-90-3, To a solution of 4,5-dimethyl-1,3-dioxolene-2-one (TCI, 10 g, 88 mmol) and N- bromosuccinimide (Fluka, 15.69 g, 88 mmol) in carbon tetrachloride (250 mL) was added benzoyl peroxide (Acros, 500 mg, 2.1 mmol). The reaction mixture was then refluxed for 2.5 h after which time the volatiles were evaporated under vacuum. The resulting residue was triturated with some carbon tetrachloride, filtered and the solid cake was washed with carbon tetrachloride. The filtrate volatiles were removed under vacuum and the yellow oily residue was distilled under vacuum (2-5 torr) to give 4-bromomethyl-5-methyl-1,3-dioxolene-2-one 903 (8.35 g, b.p. 94-98 ¡ãC, 49percent) as a pale yellow oil. 1H NMR (CDCI3) 8 4.21 (s, 2H), 2.17 (s, 3H).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand 4,5-Dimethyl-1,3-dioxol-2-one reaction routes.

Reference£º
Patent; RIGEL PHARMACEUTICALS, INC.; WO2005/97760; (2005); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

A new synthetic route of 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one

Elementary reactions that involve the simultaneous collision of more than three molecules are highly improbable and have never been observed experimentally.

An elementary termolecular reaction involves the simultaneous collision of three atoms, molecules, or ions.4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, cas is 80841-78-7. Here is a downstream synthesis route of the compound 80841-78-7, 80841-78-7

Example 3; Trityl olmesartan medoxomil (III); A solution of potassium salt 4 in methyl ethyl ketone from the preceding experiment (ca. 20 g of the salt) was diluted with methyl ethyl ketone (290 ml), and, after adding potassium iodide (2 g) and 4-chloromethyl-5-methyl-l,3-dioxol-2-one (7 g), the mixture was stirred at 50 0C for 7.5 h. After the reaction was completed, the mixture was filtered, and the filtrate was washed with methyl ethyl ketone (3 x 50 ml). After concentrating to ca. 160 ml in vacuo, ethanol (250 ml) was added, and the reaction mixture was again concentrated to ca. 300 ml in vacuo.The concentrated product in ethanol was inoculated and stirred at 50 0C for 0.5 h, and after getting thicker, diluted with ethanol (50 ml) and cooled to 20 C. The precipitated product was sucked off, washed with ethanol (2 x 20 ml) and dried in a vacuum drier at 50 C. 14.4 g (86 %) of the product was obtained.

Elementary reactions that involve the simultaneous collision of more than three molecules are highly improbable and have never been observed experimentally.

Reference£º
Patent; ZENTIVA, A.S.; WO2007/48361; (2007); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Some tips on Triphenyl methyl olmesartan

With the complex challenges of chemical substances, we look forward to future research findings about 144690-92-6,belong Dioxole compound

The molecularity is the number of molecules that collide during that step in the mechanism. If only a single reactant molecule in an elementary reaction, that step is designated as unimolecular; if there are two reactant molecules, it is bimolecular.144690-92-6. A new synthetic method of this compound is introduced below., 144690-92-6

A solution of MTT in an organic solvent and water (20%) was heated for 4-8 hrs at reflux. When the solvents were either acetonitrile (ACN), isopropyl alcohol (IPA) or t-butanol (t-BuOH), 1 volume of water was added, and the reaction was stirred until the amount of MTT was less than 2%. The mixture was evaporated to dryness. Ethyl acetate (EtOAc, 1 volume) was added to the residue and then evaporated again (twice). The resulting solid was dissolved in EtOAc (12 vol) and heated to reflux. The solution was cooled (2 C.) and stirred for 2 hrs. The product was filtered, washed (EtOAc, 1 vol), and dried on vacuum (45 C.). Table 1 shows the process details with different organic solvents: TABLE 1 Total solvent Time Solvent(s) Volume Temperature ( C.) (hrs) pH ACN:H2O 5:1 + 1 85 7 4.89-4.3 IPA:H2O 5:1 + 1 85 7 4.62-4.25t-BuOH:H2O 5:1 + 1 85 7 4.78-4.28n-propanol:H2O 5:1 reflux 2.5 4.3n-BuOH:H2O 5:1 110 2.5 4.412-BuOH:H2O 5:1 100 3 4.5iso-penthanol:H2O 5:1 100 3 5DMA:H2O 5:1 100 4 4.5DMF:H2O 5:1 100 4 4.5

With the complex challenges of chemical substances, we look forward to future research findings about 144690-92-6,belong Dioxole compound

Reference£º
Patent; Hedvati, Lilach; Pilarsky, Gideon; Shenkar-Garcia, Natalia; US2006/148870; (2006); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem