Sources of common compounds: 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one

Elementary reactions that involve the simultaneous collision of more than three molecules are highly improbable and have never been observed experimentally.

We know that the rate of many reactions can be accelerated by catalysts. A catalyst speeds up the rate of a reaction by lowering the activation energy; in addition, the catalyst is regenerated in the process. 80841-78-7, molecula formula is C5H5ClO3, below Introduce a new synthetic route., 80841-78-7

Toluene (180 L) is placed into a reactor and water (3.17 L) is added, followed by addition of ethyl-4-(1 -hydroxy-1 -methylethyl)-2-propylimidazole-5- carboxylate (18.0 Kg). The mass is stirred for about 10 minutes, heated to about 45C, and potassium carbonate (25.85 Kg) is added. The temperature of the mass is raised to about 65C and maintained for about 45 minutes. N-(triphenylmethyl)- 5-[4′-(bromomethyl)biphenyl-2-yl]tetrazole (48.9 Kg) and tetrabutylammonium bromide (4.82 Kg) are added at the same temperature and the mixture is stirred at 60-700C for 10 hours. Reaction completion is verified using thin layerchromatography (TLC). After the reaction is complete, the mass is washed with water (3*120 L) at about 500C. The mass is cooled to about 25C and toluene (468 L) and potassium tertiary-butoxide (12.6 Kg) is added, then the mass is maintained at the same temperature for about 1 hour. Water (0.85 L) is added and the mass is maintained at the same temperature for about 2 hours. Reaction completion is verified using TLC, then 5-methyl-2-oxo-(1 ,3-dioxolene-4-yl)methyl chloride (20 Kg), tetrabutylammonium bromide (4.82 Kg), and sodium carbonate (3.96 Kg) are added at 40-450C. The mass is stirred at about 55C for about 11 hours. After the reaction is complete, the mass is cooled to about 20C, water (540 L) is added and the pH is adjusted to about 6-7 by adding 10% aqueous HCI. The layers are separated. The aqueous layer is extracted with toluene (240 L). The organic layers are combined and washed with water (270 L). The solvent is distilled under reduced pressure. Acetone (189 L) is added to the residue and the mixture is heated to about 45C to produce a solution, then the solution is cooled to about 300C and maintained for about 20 minutes, followed by cooling to about 2C and maintaining for about 3 hours. The formed solid is filtered, washed with acetone (54 L), and dried for about 4 hours. The material obtained is re- crystallized from acetonitrile to yield 34.0 Kg of the title compound.

Elementary reactions that involve the simultaneous collision of more than three molecules are highly improbable and have never been observed experimentally.

Reference£º
Patent; DR. REDDY’S LABORATORIES LTD.; DR. REDDY’S LABORATORIES, INC.; KOLLA, Naveen Kumar; MANNE, Nagaraju; NAREDLA, Anitha; SHINDE, Sachin Gulabrao; WO2011/14611; (2011); A2;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Discovery of Triphenyl methyl olmesartan

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps.

An elementary termolecular reaction involves the simultaneous collision of three atoms, molecules, or ions.Triphenyl methyl olmesartan, cas is 144690-92-6. Here is a downstream synthesis route of the compound 144690-92-6, 144690-92-6

Into a 1000 mL four-necked flask equipped with a two-piece stirring blade having a diameter of 10 cm,50 g of trityl olmesartan medoxomil, 225 ml of acetic acid and 75 ml of water were added and stirred at 40 C. for 2 hours to carry out deprotection reaction.Subsequently, the reaction solution was cooled to 20 C. and stirred at 20 C. for 1 hour, and the precipitated triphenylmethanol was removed by vacuum filtration,To the obtained filtrate were added 250 ml of 10% sodium hydrogen carbonate and 500 ml of ethyl acetate, followed by vigorous stirring, and the aqueous layer was separated to obtain an organic layer containing olmesartan medoxomil.200 ml of ethyl acetate was distilled off from the organic layer, and the mixture was stirred at 20 to 30 C. for 1 hour. The precipitated solid was collected by filtration under reduced pressure as a wet body.The obtained wet body was dried at 40 C. for 14 hours to obtain 30 g of crystals of olmesartan medexomil (purity: 99.54%)., 144690-92-6

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps.

Reference£º
Patent; TOKUYAMA CORPORATION; MORI, HIROYUKI; TANAKA, KENJI; (11 pag.)JP2015/74608; (2015); A;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Discovery of 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one

The chemical industry reduces the impact on the environment during synthesis, 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, , I believe this compound will play a more active role in future production and life.

80841-78-7, The molecularity is the number of molecules that collide during that step in the mechanism. If only a single reactant molecule in an elementary reaction, that step is designated as unimolecular; if there are two reactant molecules, it is bimolecular.80841-78-7. A new synthetic method of this compound is introduced below.

Example 96.20 g of (III) were suspended in a mixture of 15.5 ml of tetrahydrofuran:dimethyl sulfoxide (2:3, v/v). The mixture was cooled to 17C in order to add 0.45 g (1.3 equivalents) of sodium hydroxide. The mixture was then heated to 60C. After two hours 1 .55 g (1 .1 equivalents) of potassium carbonate were added to the mixture. The mixture was heated to 70C and 1 .41 g of (IV) dissolved in 16.2 ml of tetrahydrofuran were added to the mixture over 1 .5 hours. The reaction was completed in one hour. The mixture was cooled to room temperature. The mixture was then washed three times with a 29% solution of sodium chloride in water. Finally, the organic solvent was distilled and 18.6 ml of ethyl acetate were added. Finally (V) was crystallised from ethyl acetate by cooling. The mixture was cooled to 0-5C, it was filtered, washed with ethyl acetate and heptane and the resulting solid was dried in a heat cabinet. 5.54 g of (V) were obtained (80% yield). The resulting solid was analysed by HPLC, showing a purity of more than 97%.

The chemical industry reduces the impact on the environment during synthesis, 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, , I believe this compound will play a more active role in future production and life.

Reference£º
Patent; INTERQUIM, S.A.; JOVE MARTI, Iban; MARQUILLAS OLONDRIZ, Francisco; WO2012/55994; (2012); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

The origin of a common compound about 4,5-Dimethyl-1,3-dioxol-2-one

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps.

Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.37830-90-3, molecula formula is 4,5-Dimethyl-1,3-dioxol-2-one, below Introduce a new synthetic route., 37830-90-3

REFERENCE EXAMPLE 2 Preparation of 4-chloromethyl-5-methyl-1,3-dioxolene-2-one (II) To a solution of 75 g of 4,5-dimethyl-1,3-dioxolene-2-one (IV) in 750 ml of methylene chloride was added 97.6 g of sulfuryl chloride dropwise at 40¡ã-42¡ã C. over 2 hours. The mixture was stirred for 40 minutes at the same temperature and evaporated in vacuo to remove the solvent. NMR spectrometry of the resulting oil revealed that the product was 4-chloro-4-methyl-5-methylene-1,3-dioxolane-2-one (III) containing a trace amount of unreacted 4,5-dimethyl-1,3-dioxolene-2-one (IV). This oil was heated at 90¡ã C. with stirring for 2 hours without isolating 4-chloro-4-methyl-5-methylene-1,3-dioxolane-2-one (III) and then distilled in vacuo. 75.4 g (corresponding to an overall yield from 4,5-dimethyl-1,3-dioxolene-2-one (IV) of 77percent) of 4-chloromethyl-5-methyl-1,3-dioxolene-2-one (II) having the physicochemical properties described in Reference Example 1 was obtained.

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps.

Reference£º
Patent; Kanebo, Ltd.; US4554358; (1985); A;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Some tips on 80841-78-7

The chemical industry reduces the impact on the environment during synthesis, 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, , I believe this compound will play a more active role in future production and life.

The molecularity is the number of molecules that collide during that step in the mechanism. If only a single reactant molecule in an elementary reaction, that step is designated as unimolecular; if there are two reactant molecules, it is bimolecular.80841-78-7. A new synthetic method of this compound is introduced below., 80841-78-7

Example 1; Preparation of olmesartan medoxomilTo dimethyl acetamide (300 ml) was added 4-(1-hydroxy-1-methylethyl)-2-propyl imidazol- 5-carboxylic acid ethyl ester (50 gms) and powdered sodium hydroxide (26 gms). To this, 4-[2-(trityltetrazol-5-yl)phenyl]benzyl bromide (135 gms) was charged at 45-500C. The contents were stirred for 5 hours at 45-500C. Diisopropylethyl amine (100 ml) was charged to the reaction mass at 40-450C. A solution of 5-methyl-2-oxo-1 , 3-dioxane-4-yl)methyl chloride (80 gms) diluted with dimethyl acetamide (160 ml) was slowly added to the reaction mass at 40-450C over a period of 1 hour. The contents were heated to 60-650C and maintained for 4 hours. The reaction mass was then cooled to 30-350C and neutralized with concentrated hydrochloride acid. The reaction mass was filtered to remove inorganic impurities, charcoalized using charcoal (10 gms) andstirred for 30 minutes at 40-450C. The reaction mass was filtered over hyflo. The clear filtrate was acidified with hydrochloric acid (100 ml) slowly at 25-30C. The contents were stirred at 60C for 1 hour. The reaction mass was chilled to 0-5C and filtered to remove tritanol. The reaction mass was concentrated under reduced pressure. The residue was quenched with water (500ml), neutralized with base and extracted in dichloromethane (500 ml). The clear dichloromethane extract was then concentrated under reduced pressure and stripped off with acetone. The residue thus obtained was isolated from acetone (250 ml) to give 55 gms of the title compound. Chromatographic purity- > 99%; Example 2Preparation of olmesartan medoxomilTo dimethyl acetamide (600 ml) was added 4-(1-hydroxy-1-methylethyl)-2-propyl imidazol- 5-carboxylic acid ethyl ester (100 gms) and powdered potassium hydroxide (50 gms). To this was charged 4-[2-(trityltetrazol-5-yl)phenyl]benzyl bromide (270 gms) at 45-50C. The contents were stirred for 5 hours at 45-50C. Diisopropylethyl amine (200 ml) was charged to the reaction mass at 40-450C. To this was slowly added a solution of 5-methyl-2-oxo- 1 ,3-dioxane-4-yl)methyl chloride (160 gms) diluted with dimethyl acetamide (320 ml) at 40- 45C over a period of 1 hour. The contents were heated to 60-650C and maintained for 4 hours. The reaction mass was then cooled to 30-350C and was neutralized with concentrated hydrochloride acid. The reaction mass was filtered to remove inorganic impurities. The reaction mass was charcoalized using charcoal (20 gms) and was stirred for 30 minutes at 40-450C. The reaction mass was filtered over hyflo. The clear filtrate was acidified with hydrochloric acid (200 ml) slowly at 25-300C. The contents were stirred at 60C for 1 hour. The reaction mass was chilled to 0-50C and was filtered to remove tritanol. The reaction mass was concentrated under reduced pressure. The residue was quenched with water (1000 ml), neutralized with base and extracted in dichloromethane (1000 ml). The clear dichloromethane extract was then concentrated under reduced pressure, stripped off with acetone. The residue thus obtained was isolated from the acetone (500 ml) to give 110 gms of the title compound. Chromatogrphic purity- > 99%; Example 4Preparation of trityl olmesartan medoxomilTo dimethyl acetamide (300 ml) was added 4-(1-hydroxy-1-methylethyl)-2-propyl imidazol- 5-carboxylic acid ethyl ester (50 gms) and powdered potassium hydroxide (25 gms). To this was charged 4-[2-(trityltetrazol-5-yl)phenyl]benzyl bromide (135 gms) at 45-500C. The contents were stirred for 5 hours at 45-500C. Diisopropylethyl amine (100 ml) was charged to the reaction mass at 40-45C. To this was slowly added a solution of 5-methyl-2-oxo- 1 ,3-dioxane-4-yl) methyl chloride (80 gms) diluted with dimethyl acetamide (160 ml) at 40- 45C over a period of 1 hour. The contents were heated to 60-650C and maintained for 4 hours. The reaction mass was then cooled to 30-350C. and was neutralized with concentrated hydrochloride acid. The reaction mass was filtered to remove inorganics. The reaction mass was charcoalized using charcoal (10 gms) and was stirred for 30 minutes at 40-450C. The reaction mass was filtered over hyflo. The clear filtrate was quenched with purified water(200 ml)at 25-30C over a period of 3-4 hours. The contents were stirred at 25-300C for 30 minutes. Crude trityl olmesartan medoxomil was isolated by filtration, slurried in water (500 ml), centrifuged and dried under reduced pressure at 45-50C.

The chemical industry reduces the impact on the environment during synthesis, 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, , I believe this compound will play a more active role in future production and life.

Reference£º
Patent; CIPLA LIMITED; CURTIS, Philip, Anthony; WO2008/43996; (2008); A2;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Derivation of elementary reaction about Triphenyl methyl olmesartan

A chemical reaction often occurs in steps, although it may not always be obvious to an observer.

144690-92-6, The molecularity is the number of molecules that collide during that step in the mechanism. If only a single reactant molecule in an elementary reaction, that step is designated as unimolecular; if there are two reactant molecules, it is bimolecular.144690-92-6. A new synthetic method of this compound is introduced below.

To 2000mL four-neck flask equipped with two stirring bladesof diameter 15 cm, tritylolmesartan medoxomil100 g, acetic acid450 ml, water 150mLwere added, & stirred for 2 hours at 40 C and deprotection reaction was carried out. Thereaction solution was then cooled to 20 C, stirred for 1 hour at 20 C, and precipitated triphenyl methanol wasremoved by filtrationunder reduced pressure, and to the resulting filtrate, 10% sodium bicarbonate 500ml, ethyl acetate1000ml were added and after vigorousstirrind, the aqueous layer was separated, to obtain an organic layercontaining olmesartanmedoxomil. ethylacetate 400ml was evaporated from the organic layer, and stirred for 1 hour at20 ~ 30 , and the precipitated solid was done filtration under reduced pressure and fractionated aswet product. The resulting wet product was dried for 14 hours at 40 , the crude olmesartan medoxomil wasobtained 60g(residual ethyl acetate content: 5420ppm, the residual amount of acetic acid:490ppm, purity: 99.37%). In 100mL three-necked flask equipped with two stirringblades of diameter 2.5 cm, crude olmesartan medoxomil 5g obtained in ProductionExample 1, acetone 15 ml, ethyl acetate 15 mL, water 3g were added and heatedto 60 C, to obtain a solution of olmesartan medoxomil (solution adjustingstep). then cooled to 30 C, and after adding seed crystals of olmesartanmedoxomil, it was stirred for 15 hours at 28 C (crystallization step: it wasconfirmed that there is no change in the amount of crystals even if it isretained for more time.) .

A chemical reaction often occurs in steps, although it may not always be obvious to an observer.

Reference£º
Patent; TOKUYAMA CORPORATION; MORI, HIROYUKI; TANAKA, KENJI; (13 pag.)JP2016/65007; (2016); A;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

The origin of a common compound about Triphenyl methyl olmesartan

The chemical industry reduces the impact on the environment during synthesis, Triphenyl methyl olmesartan, , I believe this compound will play a more active role in future production and life.

An elementary termolecular reaction involves the simultaneous collision of three atoms, molecules, or ions.Triphenyl methyl olmesartan, cas is 144690-92-6. Here is a downstream synthesis route of the compound 144690-92-6, 144690-92-6

A solution of MTT in an organic solvent and water (20%) was heated for 4-8 hrs at reflux. When the solvents were either acetonitrile (ACN), isopropyl alcohol (IPA) or t-butanol (t-BuOH), 1 volume of water was added, and the reaction was stirred until the amount of MTT was less than 2%. The mixture was evaporated to dryness. Ethyl acetate (EtOAc, 1 volume) was added to the residue and then evaporated again (twice). The resulting solid was dissolved in EtOAc (12 vol) and heated to reflux. The solution was cooled (2 C.) and stirred for 2 hrs. The product was filtered, washed (EtOAc, 1 vol), and dried on vacuum (45 C.). Table 1 shows the process details with different organic solvents: TABLE 1 Total solvent Time Solvent(s) Volume Temperature ( C.) (hrs) pH ACN:H2O 5:1 + 1 85 7 4.89-4.3 IPA:H2O 5:1 + 1 85 7 4.62-4.25t-BuOH:H2O 5:1 + 1 85 7 4.78-4.28n-propanol:H2O 5:1 reflux 2.5 4.3n-BuOH:H2O 5:1 110 2.5 4.412-BuOH:H2O 5:1 100 3 4.5iso-penthanol:H2O 5:1 100 3 5DMA:H2O 5:1 100 4 4.5DMF:H2O 5:1 100 4 4.5

The chemical industry reduces the impact on the environment during synthesis, Triphenyl methyl olmesartan, , I believe this compound will play a more active role in future production and life.

Reference£º
Patent; Hedvati, Lilach; Pilarsky, Gideon; Shenkar-Garcia, Natalia; US2006/148870; (2006); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Discovery of 144690-92-6

Elementary reactions that involve the simultaneous collision of more than three molecules are highly improbable and have never been observed experimentally.

144690-92-6, The molecularity is the number of molecules that collide during that step in the mechanism. If only a single reactant molecule in an elementary reaction, that step is designated as unimolecular; if there are two reactant molecules, it is bimolecular.144690-92-6. A new synthetic method of this compound is introduced below.

A solution of MTT in an organic solvent and water (20%) was heated for 4-8 hrs at reflux. When the solvents were either acetonitrile (ACN), isopropyl alcohol (IPA) or t-butanol (t-BuOH), 1 volume of water was added, and the reaction was stirred until the amount of MTT was less than 2%. The mixture was evaporated to dryness. Ethyl acetate (EtOAc, 1 volume) was added to the residue and then evaporated again (twice). The resulting solid was dissolved in EtOAc (12 vol) and heated to reflux. The solution was cooled (2 C.) and stirred for 2 hrs. The product was filtered, washed (EtOAc, 1 vol), and dried on vacuum (45 C.). Table 1 shows the process details with different organic solvents: TABLE 1 Total solvent Time Solvent(s) Volume Temperature ( C.) (hrs) pH ACN:H2O 5:1 + 1 85 7 4.89-4.3 IPA:H2O 5:1 + 1 85 7 4.62-4.25t-BuOH:H2O 5:1 + 1 85 7 4.78-4.28n-propanol:H2O 5:1 reflux 2.5 4.3n-BuOH:H2O 5:1 110 2.5 4.412-BuOH:H2O 5:1 100 3 4.5iso-penthanol:H2O 5:1 100 3 5DMA:H2O 5:1 100 4 4.5DMF:H2O 5:1 100 4 4.5

Elementary reactions that involve the simultaneous collision of more than three molecules are highly improbable and have never been observed experimentally.

Reference£º
Patent; Hedvati, Lilach; Pilarsky, Gideon; Shenkar-Garcia, Natalia; US2006/148870; (2006); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Discovery of 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one

A chemical reaction often occurs in steps, although it may not always be obvious to an observer.

An elementary termolecular reaction involves the simultaneous collision of three atoms, molecules, or ions.4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, cas is 80841-78-7. Here is a downstream synthesis route of the compound 80841-78-7, 80841-78-7

Example 2; 36.0 g (50.3 mmol) ethyl 4-(1-hydroxy-1-methylethyl)-2-propyl-1-(4-[2-(trityltetrazol-5-yl)-phenyl]phenyl}-methyl imidazole-5-carboxylate (Va) and 3.0 g (75.4 mmol) of NaOH were suspended in 413 ml dimethylacetamide. The suspension was then stirred at room temperature for 20 h and after that 6.9 g (50.3 mmol) of K2CO3 were added. The mixture was cooled to 0C and solution of 15.4 g (70.4 mmol) 4-chloromethyl-5-methyl-2-oxo-1,3-dioxolene in 39 ml of dimethylacetamide were slowly added. The mixture was slowly heated to 50C and stirred at this temperature for 2 h. After esterification was completed, the mixture was cooled to 10 C and poured into a mixture of 625 ml of ethyl acetate and 625 ml of 10 % NaCl, and stirred at 25 C for 15 min. The phases were separated and organic phase was washed 2x with 500 ml of 10 % NaCl, dried over Na2SO4 and filtered. The filtrate was concentrated up to ? (approximately 270 g) at reduced pressure. To the resulting solution, 80 ml of ethanol and 8.3 ml (100 mmol) of conc. HCl were added and stirred at 24-26C for 3h. To the cooled mixture 600 ml of water was added and pH of the suspension was estimated to 5 by addition of 5 M NaOH. The phases were stirred for 15 min and separated. Water phase was reextracted with 150 ml of ethyl acetate. Collected organic phases were dried over Na2SO4, filtered and concentrated under reduced pressure. 560 ml of ethyl acetate were added and the mixture was evaporated again. After that, 300 ml of ethyl acetate were added and the mixture was cooled to 20 C and stirred for 1h, filtered off and washed with 20 ml of fresh ethyl acetate. The yield of the product (I) was 21 g (75 %).

A chemical reaction often occurs in steps, although it may not always be obvious to an observer.

Reference£º
Patent; KRKA, tovarna zdravil, d.d., Novo mesto; EP1816131; (2007); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Some tips on Triphenyl methyl olmesartan

A chemical reaction often occurs in steps, although it may not always be obvious to an observer.

One of the major reasons is to use measurements of the macroscopic properties of a system, the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level. 144690-92-6, introduce a new downstream synthesis route. 144690-92-6

To 2000mL four-neck flask equipped with two stirring bladesof diameter 15 cm, tritylolmesartan medoxomil100 g, acetic acid450 ml, water 150mLwere added, & stirred for 2 hours at 40 C and deprotection reaction was carried out. Thereaction solution was then cooled to 20 C, stirred for 1 hour at 20 C, and precipitated triphenyl methanol wasremoved by filtrationunder reduced pressure, and to the resulting filtrate, 10% sodium bicarbonate 500ml, ethyl acetate1000ml were added and after vigorousstirrind, the aqueous layer was separated, to obtain an organic layercontaining olmesartanmedoxomil. ethylacetate 400ml was evaporated from the organic layer, and stirred for 1 hour at20 ~ 30 , and the precipitated solid was done filtration under reduced pressure and fractionated aswet product. The resulting wet product was dried for 14 hours at 40 , the crude olmesartan medoxomil wasobtained 60g(residual ethyl acetate content: 5420ppm, the residual amount of acetic acid:490ppm, purity: 99.37%). In 100mL three-necked flask equipped with two stirringblades of diameter 2.5 cm, crude olmesartan medoxomil 5g obtained in ProductionExample 1, acetone 15 ml, ethyl acetate 15 mL, water 3g were added and heatedto 60 C, to obtain a solution of olmesartan medoxomil (solution adjustingstep). then cooled to 30 C, and after adding seed crystals of olmesartanmedoxomil, it was stirred for 15 hours at 28 C (crystallization step: it wasconfirmed that there is no change in the amount of crystals even if it isretained for more time.) .

A chemical reaction often occurs in steps, although it may not always be obvious to an observer.

Reference£º
Patent; TOKUYAMA CORPORATION; MORI, HIROYUKI; TANAKA, KENJI; (13 pag.)JP2016/65007; (2016); A;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem