Discovery of Triphenyl methyl olmesartan

A chemical reaction often occurs in steps, although it may not always be obvious to an observer.

Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.144690-92-6, molecula formula is Triphenyl methyl olmesartan, below Introduce a new synthetic route., 144690-92-6

10L reaction flask was charged 500.0g (0.62mol) compound 6,3L water, 1L of acetone, was added dropwise a solution of 645.0g of 22.5% sulfuric acid at 20 . Dropping was completed, the reaction at room temperature after 4.5h TLC or HPLC in control, raw reaction was complete. Body cooling system to 0-5 , when the temperature stabilized filtrate back into the reaction vessel was charged with acetone 1L and 2L water. The system was maintained at 15 solution of 210g of potassium carbonate and 400g water to form a solution, drops of completion, stirring after 1-2h incubation filtration. The filter cake was dried to obtain olmesartan medoxomil pure 328.9g. HPLC: 99.96%, yield: 94.3%, 144690-92-6

A chemical reaction often occurs in steps, although it may not always be obvious to an observer.

Reference£º
Patent; Jiangsu Bang Pharmaceutical Co., Ltd.; Zhao, Guangrong; Huan, Shuang; Zhao, Huayang; Liu, Liping; Chen, Guoping; Tang, Jingyu; (19 pag.)CN105481842; (2016); A;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Application of Triphenyl methyl olmesartan

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products. The stepwise changes are collectively called the reaction mechanism.

An elementary termolecular reaction involves the simultaneous collision of three atoms, molecules, or ions.Triphenyl methyl olmesartan, cas is 144690-92-6. Here is a downstream synthesis route of the compound 144690-92-6, 144690-92-6

A solution of MTT in an organic solvent and water (20%) was heated for 4-8 hrs at reflux. When the solvents were either acetonitrile (ACN), isopropyl alcohol (IPA) or t-butanol (t-BuOH), 1 volume of water was added, and the reaction was stirred until the amount of MTT was less than 2%. The mixture was evaporated to dryness. Ethyl acetate (EtOAc, 1 volume) was added to the residue and then evaporated again (twice). The resulting solid was dissolved in EtOAc (12 vol) and heated to reflux. The solution was cooled (2 C.) and stirred for 2 hrs. The product was filtered, washed (EtOAc, 1 vol), and dried on vacuum (45 C.). Table 1 shows the process details with different organic solvents: TABLE 1 Total solvent Time Solvent(s) Volume Temperature ( C.) (hrs) pH ACN:H2O 5:1 + 1 85 7 4.89-4.3 IPA:H2O 5:1 + 1 85 7 4.62-4.25t-BuOH:H2O 5:1 + 1 85 7 4.78-4.28n-propanol:H2O 5:1 reflux 2.5 4.3n-BuOH:H2O 5:1 110 2.5 4.412-BuOH:H2O 5:1 100 3 4.5iso-penthanol:H2O 5:1 100 3 5DMA:H2O 5:1 100 4 4.5DMF:H2O 5:1 100 4 4.5, 144690-92-6

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products. The stepwise changes are collectively called the reaction mechanism.

Reference£º
Patent; Hedvati, Lilach; Pilarsky, Gideon; Shenkar-Garcia, Natalia; US2006/148870; (2006); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Research on new synthetic routes about 4,5-Dimethyl-1,3-dioxol-2-one

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps.

A balanced equation for a chemical reaction indicates what is reacting and what is produced, but it reveals nothing about how the reaction actually takes place. The reaction mechanism is the process, or pathway, by which a reaction occurs.37830-90-3. An updated downstream synthesis route of 37830-90-3 as follows., 37830-90-3

REFERENCE EXAMPLE 2 Preparation of 4-chloromethyl-5-methyl-1,3-dioxolene-2-one (II) To a solution of 75 g of 4,5-dimethyl-1,3-dioxolene-2-one (IV) in 750 ml of methylene chloride was added 97.6 g of sulfuryl chloride dropwise at 40¡ã-42¡ã C. over 2 hours. The mixture was stirred for 40 minutes at the same temperature and evaporated in vacuo to remove the solvent. NMR spectrometry of the resulting oil revealed that the product was 4-chloro-4-methyl-5-methylene-1,3-dioxolane-2-one (III) containing a trace amount of unreacted 4,5-dimethyl-1,3-dioxolene-2-one (IV). This oil was heated at 90¡ã C. with stirring for 2 hours without isolating 4-chloro-4-methyl-5-methylene-1,3-dioxolane-2-one (III) and then distilled in vacuo. 75.4 g (corresponding to an overall yield from 4,5-dimethyl-1,3-dioxolene-2-one (IV) of 77percent) of 4-chloromethyl-5-methyl-1,3-dioxolene-2-one (II) having the physicochemical properties described in Reference Example 1 was obtained.

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps.

Reference£º
Patent; Kanebo, Ltd.; US4554358; (1985); A;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Continuously updated synthesis method about 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one

Elementary reactions that involve the simultaneous collision of more than three molecules are highly improbable and have never been observed experimentally.

Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.80841-78-7, molecula formula is 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, below Introduce a new synthetic route., 80841-78-7

Example 1-5 (0330) (0331) A mixture of BIC (0.6 g, 0.83 mmol), potassium iodide (0.069 g, 0.41 mmol), OXC (0.245 g, 1.65 mmol) and methyl ethyl ketone (9.0 mL, 15 vol) was stirred at 50 C. for 20 hr. The reaction mixture was filtered, the filtrate was concentrated under reduced pressure, and the obtained concentrated residue was purified by silica gel column chromatography (20-22% ethyl acetate/hexane) to give TOLM (650 mg, yield 84.4%). (0332) Mass: 801 [M+H]+, 824 [M+Na]+.

Elementary reactions that involve the simultaneous collision of more than three molecules are highly improbable and have never been observed experimentally.

Reference£º
Patent; API CORPORATION; Seki, Masahiko; US2015/239854; (2015); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Sources of common compounds: 144690-92-6

As the rapid development of chemical substances, we look forward to future research findings about 144690-92-6

Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.144690-92-6, molecula formula is Triphenyl methyl olmesartan, below Introduce a new synthetic route., 144690-92-6

A solution of MTT in an organic solvent and water (20%) was heated for 4-8 hrs at reflux. When the solvents were either acetonitrile (ACN), isopropyl alcohol (IPA) or t-butanol (t-BuOH), 1 volume of water was added, and the reaction was stirred until the amount of MTT was less than 2%. The mixture was evaporated to dryness. Ethyl acetate (EtOAc, 1 volume) was added to the residue and then evaporated again (twice). The resulting solid was dissolved in EtOAc (12 vol) and heated to reflux. The solution was cooled (2 C.) and stirred for 2 hrs. The product was filtered, washed (EtOAc, 1 vol), and dried on vacuum (45 C.). Table 1 shows the process details with different organic solvents: TABLE 1 Total solvent Time Solvent(s) Volume Temperature ( C.) (hrs) pH ACN:H2O 5:1 + 1 85 7 4.89-4.3 IPA:H2O 5:1 + 1 85 7 4.62-4.25t-BuOH:H2O 5:1 + 1 85 7 4.78-4.28n-propanol:H2O 5:1 reflux 2.5 4.3n-BuOH:H2O 5:1 110 2.5 4.412-BuOH:H2O 5:1 100 3 4.5iso-penthanol:H2O 5:1 100 3 5DMA:H2O 5:1 100 4 4.5DMF:H2O 5:1 100 4 4.5, 144690-92-6

As the rapid development of chemical substances, we look forward to future research findings about 144690-92-6

Reference£º
Patent; Hedvati, Lilach; Pilarsky, Gideon; Shenkar-Garcia, Natalia; US2006/148870; (2006); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Continuously updated synthesis method about 144690-92-6

Elementary reactions that involve the simultaneous collision of more than three molecules are highly improbable and have never been observed experimentally.

Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.144690-92-6, molecula formula is Triphenyl methyl olmesartan, below Introduce a new synthetic route., 144690-92-6

Example 1; Preparation of olmesartan medoxomilTo dimethyl acetamide (300 ml) was added 4-(1-hydroxy-1-methylethyl)-2-propyl imidazol- 5-carboxylic acid ethyl ester (50 gms) and powdered sodium hydroxide (26 gms). To this, 4-[2-(trityltetrazol-5-yl)phenyl]benzyl bromide (135 gms) was charged at 45-500C. The contents were stirred for 5 hours at 45-500C. Diisopropylethyl amine (100 ml) was charged to the reaction mass at 40-450C. A solution of 5-methyl-2-oxo-1 , 3-dioxane-4-yl)methyl chloride (80 gms) diluted with dimethyl acetamide (160 ml) was slowly added to the reaction mass at 40-450C over a period of 1 hour. The contents were heated to 60-650C and maintained for 4 hours. The reaction mass was then cooled to 30-350C and neutralized with concentrated hydrochloride acid. The reaction mass was filtered to remove inorganic impurities, charcoalized using charcoal (10 gms) andstirred for 30 minutes at 40-450C. The reaction mass was filtered over hyflo. The clear filtrate was acidified with hydrochloric acid (100 ml) slowly at 25-30C. The contents were stirred at 60C for 1 hour. The reaction mass was chilled to 0-5C and filtered to remove tritanol. The reaction mass was concentrated under reduced pressure. The residue was quenched with water (500ml), neutralized with base and extracted in dichloromethane (500 ml). The clear dichloromethane extract was then concentrated under reduced pressure and stripped off with acetone. The residue thus obtained was isolated from acetone (250 ml) to give 55 gms of the title compound. Chromatographic purity- > 99%; Example 2Preparation of olmesartan medoxomilTo dimethyl acetamide (600 ml) was added 4-(1-hydroxy-1-methylethyl)-2-propyl imidazol- 5-carboxylic acid ethyl ester (100 gms) and powdered potassium hydroxide (50 gms). To this was charged 4-[2-(trityltetrazol-5-yl)phenyl]benzyl bromide (270 gms) at 45-50C. The contents were stirred for 5 hours at 45-50C. Diisopropylethyl amine (200 ml) was charged to the reaction mass at 40-450C. To this was slowly added a solution of 5-methyl-2-oxo- 1 ,3-dioxane-4-yl)methyl chloride (160 gms) diluted with dimethyl acetamide (320 ml) at 40- 45C over a period of 1 hour. The contents were heated to 60-650C and maintained for 4 hours. The reaction mass was then cooled to 30-350C and was neutralized with concentrated hydrochloride acid. The reaction mass was filtered to remove inorganic impurities. The reaction mass was charcoalized using charcoal (20 gms) and was stirred for 30 minutes at 40-450C. The reaction mass was filtered over hyflo. The clear filtrate was acidified with hydrochloric acid (200 ml) slowly at 25-300C. The contents were stirred at 60C for 1 hour. The reaction mass was chilled to 0-50C and was filtered to remove tritanol. The reaction mass was concentrated under reduced pressure. The residue was quenched with water (1000 ml), neutralized with base and extracted in dichloromethane (1000 ml). The clear dichloromethane extract was then concentrated under reduced pressure, stripped off with acetone. The residue thus obtained was isolated from the acetone (500 ml) to give 110 gms of the title compound. Chromatogrphic purity- > 99%; Example 3Preparation of olmesartan medoxomilTo dimethyl acetamide (800 ml) was added 4-(1-hydroxy-1-methylethyl)-2-propyl imidazol- 5-carboxylic acid ethyl ester (100 gms) and powdered potassium carbonate (200 gms). To this was charged 4-[2-(trityltetrazol-5-yl)phenyl]benzyl bromide (300 gms) at 45-50C. The contents were stirred for 8-10 hours at 45-50C. The insolubles were filtered. The contents were cooled to 5-100C. Potassium tertiary butoxide (100 gms) was charged at a temperature below 45C. The reaction was maintained at 40-450C for 3 hrs. To this was slowly added 5-methyl-2-oxo-1 ,3-dioxane-4-yl) methyl chloride at 40-450C over a period of 1 hour. The contents were heated to 60-650C and maintained for 4 hours. The reaction mass was then cooled to 30-350C and was neutralized with concentrated hydrochloride acid. The reaction mass was filtered to remove inorganics. The reaction mass was charcoalized using charcoal (10 gms) and was stirred for 30 minutes at 40-450C. The reaction mass was filtered over hyflo. The clear filtrate was acidified with hydrochloric acid (100 ml) slowly at 25-30C. The contents were stirred at 60C for 1 hour. The reaction mass was chilled to 0-5C and was filtered to remove tritanol. The reaction mass was concentrated under reduced pressure. The residue was quenched with water (500 ml), neutralized with base and extracted in dichloromethane (500 ml).The clear dichloromethane extract was then concentrated under reduced pressure, stripped off with acetone. The residue thus obtained was isolated from the acetone (250 ml) to give 55 gms of the title compound. Chromatogrphic purity- > 99%

Elementary reactions that involve the simultaneous collision of more than three molecules are highly improbable and have never been observed experimentally.

Reference£º
Patent; CIPLA LIMITED; CURTIS, Philip, Anthony; WO2008/43996; (2008); A2;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Research on new synthetic routes about 80841-78-7

The chemical industry reduces the impact on the environment during synthesis, 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, , I believe this compound will play a more active role in future production and life.

A balanced equation for a chemical reaction indicates what is reacting and what is produced, but it reveals nothing about how the reaction actually takes place. The reaction mechanism is the process, or pathway, by which a reaction occurs.80841-78-7. An updated downstream synthesis route of 80841-78-7 as follows., 80841-78-7

130 ml of N,N-dimethylacetamide, 14.0 g (20 mmol) of ethyl 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2′-(1-trityl-1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylate and 2.2 g (16 mmol) of KOH were charged into reaction vessel at room temperature under inert atmosphere. The mixture was stirred at room temperature for 2 h, and then the sample of reaction mixture was analysed (HPLC; starting material 0.2 %, hydrolysed starting material 98.11 %). Then 3.0 g (2.2 mmol) of potassium carbonate powder and 1.4 g (8.4 mmol) of potassium iodide were added. The reaction mixture was cooled to 0 C and 5.0 g (33 mmol) of 4-(chloromethyl)-5-methyl-1,3-dioxol-2-one was added at 0 to 5C. After the addition, the reaction mixture was warmed to 40-45 C within one hour, then the mixture was stirred at this temperature for 2h. The sample of reaction mixture was analysed (HPLC; tritylolmesartan medoxomil 97.22 %, 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2′-(1-trityl-1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylate 0.09 %). The mixture was cooled to 10 to 20 C and then 250 ml of ethyl acetate was added. The mixture was cooled again to 5-10 C and then 200 ml of 10 % NaCl was added slowly. The temperature should not be higher than 25 C during the addition. The phases were mixed separated and organic phase was washed with 100 ml of 10 % NaCl (2*) and dried over anhydrous sodium sulphate. After the filtration filtrate was evaporated under reduced pressure at temperature under 45C to oily residue. To the residue 30 ml of acetonitrile was added at temperature not more than 45C. The mixture was stirred at this temperature for 10 minutes then was cooled to 20 to 25C and stirred at this temperature for 0.5 h and after that 3h at 0 to 5C. The suspension was filtered, the cake washed with cold acetonitrile and dried at 40 to 50C. Yield: 17.0 g (94%) HPLC: 99.72 % of the product, all impurities are under 0.1%. IR: 3408, 1818, 1805, 1741, 1681, 1529, 1147, 1003, 699 XRD:

The chemical industry reduces the impact on the environment during synthesis, 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, , I believe this compound will play a more active role in future production and life.

Reference£º
Patent; Krka Tovarna Zdravil, D.D., Novo Mesto; EP2334668; (2011); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

The origin of a common compound about 144690-92-6

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan

144690-92-6, The molecularity is the number of molecules that collide during that step in the mechanism. If only a single reactant molecule in an elementary reaction, that step is designated as unimolecular; if there are two reactant molecules, it is bimolecular.144690-92-6. A new synthetic method of this compound is introduced below.

A solution of MTT in an organic solvent and water (20%) was heated for 4-8 hrs at reflux. When the solvents were either acetonitrile (ACN), isopropyl alcohol (IPA) or t-butanol (t-BuOH), 1 volume of water was added, and the reaction was stirred until the amount of MTT was less than 2%. The mixture was evaporated to dryness. Ethyl acetate (EtOAc, 1 volume) was added to the residue and then evaporated again (twice). The resulting solid was dissolved in EtOAc (12 vol) and heated to reflux. The solution was cooled (2 C.) and stirred for 2 hrs. The product was filtered, washed (EtOAc, 1 vol), and dried on vacuum (45 C.). Table 1 shows the process details with different organic solvents: TABLE 1 Total solvent Time Solvent(s) Volume Temperature ( C.) (hrs) pH ACN:H2O 5:1 + 1 85 7 4.89-4.3 IPA:H2O 5:1 + 1 85 7 4.62-4.25t-BuOH:H2O 5:1 + 1 85 7 4.78-4.28n-propanol:H2O 5:1 reflux 2.5 4.3n-BuOH:H2O 5:1 110 2.5 4.412-BuOH:H2O 5:1 100 3 4.5iso-penthanol:H2O 5:1 100 3 5DMA:H2O 5:1 100 4 4.5DMF:H2O 5:1 100 4 4.5

With the complex challenges of chemical substances, we look forward to future research findings about Triphenyl methyl olmesartan

Reference£º
Patent; Hedvati, Lilach; Pilarsky, Gideon; Shenkar-Garcia, Natalia; US2006/148870; (2006); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

New learning discoveries about 144690-92-6

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps.

144690-92-6, A balanced equation for a chemical reaction indicates what is reacting and what is produced, but it reveals nothing about how the reaction actually takes place. The reaction mechanism is the process, or pathway, by which a reaction occurs.144690-92-6. An updated downstream synthesis route of 144690-92-6 as follows.

Example 4; Olmesartan medoxomil (V); The starting substance (III; 10 g) was dissolved in acetone (50 ml), and, after adding water (25 g), the mixture was heated to a mild boil for 14 h. After evaporating acetone and adding ethyl acetate (50 ml), water was separated, and the organic layer was again washed with water (10 ml). The extract was concentrated and evaporated with toluene (50 ml) once more, the residue was dissolved in ethyl acetate (20 ml) and toluene (20 ml). The mixture was concentrated to 25 ml and allowed to crystallize under stirring for 30 min; after cooling to 15 C, the insoluble portion was sucked off and washed with ethyl acetate. 6.5 g of the product was obtained, which, after recrystallization from ethanol, gave 6 g (86 %) of the product with an HPLC purity of 98.7 %.By further recrystallization from ethyl acetate and cyclohexane, 5.1 g of a sample with an HPLC purity of 99.6 % was obtained. 1H NMR (250 MHz, CDCl3) delta: 0.82 (3H, t, J = 7.5 Hz); 1.50 (6H, s); 1.54-1.63 (2H, m); 2.07 (3H, s); 2.48 (2H, t, J = 7.5 Hz); 4.86 (2H, s); 5.32 (2H, s); 6.70 (2H, d, J = 8 Hz); 6.99 (2H, d, J = 8 Hz); 7.3-7.5 (3H, m); 7.72 (IH, dd, J = 1.7 Hz).

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps.

Reference£º
Patent; ZENTIVA, A.S.; WO2007/48361; (2007); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Share a compound : Triphenyl methyl olmesartan

The chemical industry reduces the impact on the environment during synthesis, Triphenyl methyl olmesartan, , I believe this compound will play a more active role in future production and life.

We know that the rate of many reactions can be accelerated by catalysts. A catalyst speeds up the rate of a reaction by lowering the activation energy; in addition, the catalyst is regenerated in the process. 144690-92-6, molecula formula is C48H44N6O6, below Introduce a new synthetic route., 144690-92-6

To 12.0g (15 mmol) of tritylolmesartan medoxomil prepared according to examples 1 or 2 69 ml of ethyl acetate was added and after that 12 ml of methanol and 2.67 ml (32 mmol) of conc. HCl were added. The mixture was stirred at room temperature for 2h and then the mixture was cooled to below 2C. To the cooled mixture 71 ml of 1% NH3 was slowly added to adjust pH to 4.93. The phases were separated and water phase was reextracted with 20 ml of ethyl acetate. Collected organic phases were dried over Na2SO4, filtered and concentrated under reduced pressure to approximately 15g of oily residue. To this residue 15 ml of ethyl acetate were added and the mixture was cooled to 20 C and stirred at this temperature for 2h, and then cooled under 0C and stirred at this temperature for 1hour. The product was filtered off and washed with 5 ml of fresh ethyl acetate and dried. Yield: 7.55 g (90%). HPLC: 99.81 % of the product, all individual impurities under 0.10%.

The chemical industry reduces the impact on the environment during synthesis, Triphenyl methyl olmesartan, , I believe this compound will play a more active role in future production and life.

Reference£º
Patent; Krka Tovarna Zdravil, D.D., Novo Mesto; EP2334668; (2011); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem