Share a compound : 37830-90-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand 4,5-Dimethyl-1,3-dioxol-2-one reaction routes.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.37830-90-3, 4,5-Dimethyl-1,3-dioxol-2-one it is a common compound, a new synthetic route is introduced below.37830-90-3

(1) 2.08 g of 4,5-dimethyl-1,3-dioxol-2-one was dissolved in 24 mL of benzene, to which 3.25 g of N-bromosuccinimide and 86 mg of 2,2′-azobis(isobutyronitrile) were added at room temperature, and this mixture was stirred for 30 minutes while heating it under reflux. The reaction mixture was cooled to room temperature, and consequently, a solution of 4-bromomethyl-5-methyl-1,3-dioxol-2-one in benzene was obtained.(2) 3.00 g of methyl 3-(5-[4-(cyclopentyloxy)-2-hydroxybenzoyl]-2-{[3-(methoxymethoxy)-1,2-benzisoxazol-6-yl]methoxy}phenyl) propanoate was dissolved in 15 mL of methanol and 15 mL of tetrahydrofuran, to which a solution of 1.08 g of potassium hydroxide in 4.5 mL of water was added, and this mixture was stirred for one hour at room temperature, and then the solvent was distilled out under reduced pressure. The resultant residue was dissolved in 40 mL of N,N-dimethylformamide, to which 3.60 g of potassium carbonate was added. Then, the benzene solution prepared in (1) was added thereto, and was stirred for one hour at room temperature. The reaction mixture was poured into a mixture of ethyl acetate and water, and adjusted to pH 7 with 6M hydrochloric acid, and then the organic phase was separated therefrom. After the resultant organic phase was washed with water and a saturated sodium chloride solution successively, the washed phase was dried over anhydrous sodium sulfate, and the solvent was distilled out under reduced pressure. The resultant residue was purified by silica gel column chromatography [eluent; toluene:ethyl acetate=5:1] to yield 1.58 g of (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 3-(5-[4-(cyclopentyloxy)-2-hydroxybenzoyl]-2-{[3-(methoxymethoxy)-1,2-benzisoxazol-6-yl]methoxy}phenyl) propanoate as yellow oil. NMR(400MHz,CDCl3) delta value: 1.5-2.0(8H,m), 2.16(3H,s), 2.75(2H,t,J=7.6Hz), 3.10(2H,t,J=7.6Hz), 3.65(3H,s), 4.5-5.0(3H,m), 5.33(2H,s), 5.57(2H,s), 6.37(1H,dd,J=8.8,2.4Hz), 6.47(1H,d,J=2.4Hz), 6.95(1H,d,J=8.4Hz), 7.35(1H,dd,J=8.4,1.2Hz), 7.4-7.6(4H,m), 7.72(1H,d,J=8.0Hz), 12.67(1H,s).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand 4,5-Dimethyl-1,3-dioxol-2-one reaction routes.

Reference£º
Patent; TOYAMA CHEMICAL CO., LTD.; Hirono, Shuichi; Shiozawa, Shunichi; EP1445249; (2004); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

The important role of 144690-92-6

With the synthetic route has been constantly updated, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

144690-92-6, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”144690-92-6

The reaction flask was charged with 400 g of compound VII (0.50 mol) and 70% aqueous acetic acid solution of 3200 ml, Reaction was carried out at 50 C for 2 hours. After the completion of the reaction, the solvent was concentrated and concentrated, and ammonia was added to the residue.PH = 7, extracted with 1400 ml of ethyl acetate, the ethyl acetate layer was washed with water, and finally with anhydrous sodium sulfateDried; filtered, the filtrate was concentrated to dryness and the residue was recrystallized from ethanol to give the compound I pure product 256.1G, yield: 91.79%.

With the synthetic route has been constantly updated, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

Reference£º
Patent; Hunan Ouya biological Co. Ltd.; Lin, kaizhao; (19 pag.)CN103304550; (2016); B;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

A new synthetic route of 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one

The chemical industry reduces the impact on the environment during synthesis, 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, , I believe this compound will play a more active role in future production and life.

4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”80841-78-7

To BIC (110 g, 1 eq) was added acetone (385 mL, 3.5 vol) at 25C – 30C, and the mixture was dissolved by stirring for 5 min. Sodium carbonate (20.85 g, 1.3 eq) and potassium iodide (0.25 g, 0.01) were added, and the mixture was stirred for 10 min. A solution of 4-chloromethyl-5-methyl-2-oxo-1,3-dioxolene (31.456 g, 1.4 eq) in acetone (165 mL, 1.5 vol) was added thereto. The reaction mixture was heated to 45C – 50C, and stirred at the same temperature for 12 hr. Using TLC (thin layer chromatography) (TLC eluent: 10% methanol/methylene chloride, detection method: UV), complete disappearance of BIC was confirmed. The reaction mixture was cooled to 25C – 30C. Then, the solvent contained in the reaction mixture was evaporated under reduced pressure at 40C – 45C. To the obtained residue were added 10% brine (550 mL, 5 vol) and toluene (550 mL, 5 vol). Furthermore, the mixture was adjusted to pH 7 – 8 by adding 5% hydrochloric acid (33 mL), stirred for 10 min, left standing for 5 min and partitioned. The aqueous layer was extracted with toluene (2×330 mL, 2×3 vol). The extracts were combined with the organic layer, 10% brine (550 mL, 5 vol) was added, and the mixture was stirred for 5 min, left standing for 45 min, partitioned, and concentrated under reduced pressure at 40C – 45C to give TOLM (110 g, 90%). [0306] To the obtained TOLM was added acetone (110 mL, 1 vol), and the mixture was stirred at 25C – 30C for 30 min. n-Heptane (440 mL, 4 vol) was added, and the mixture was cooled to 5C – 10C and stirred at 5C – 10C for 30 min, whereby precipitation of a solid was confirmed. The solid (80 g, 66%) was collected by filtration, and blast dried. To the obtained solid was added isopropyl alcohol (400 mL, 5 vol), and the mixture was heated to 50C – 55C and stirred at 50C – 55C for 1 hr. Then, the mixture was cooled to 25C – 30C, and stirred at 25C – 30C for 1 hr. The resulting solid was filtered and suction-filtered for 10 min to give TOLM (76 g, 62%).

The chemical industry reduces the impact on the environment during synthesis, 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, , I believe this compound will play a more active role in future production and life.

Reference£º
Patent; API Corporation; SEKI, Masahiko; EP2891650; (2015); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Analyzing the synthesis route of 80841-78-7

The chemical industry reduces the impact on the environment during synthesis, 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, , I believe this compound will play a more active role in future production and life.

4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”80841-78-7

Toluene (180 L) is placed into a reactor and water (3.17 L) is added, followed by addition of ethyl-4-(1 -hydroxy-1 -methylethyl)-2-propylimidazole-5- carboxylate (18.0 Kg). The mass is stirred for about 10 minutes, heated to about 45C, and potassium carbonate (25.85 Kg) is added. The temperature of the mass is raised to about 65C and maintained for about 45 minutes. N-(triphenylmethyl)- 5-[4′-(bromomethyl)biphenyl-2-yl]tetrazole (48.9 Kg) and tetrabutylammonium bromide (4.82 Kg) are added at the same temperature and the mixture is stirred at 60-700C for 10 hours. Reaction completion is verified using thin layerchromatography (TLC). After the reaction is complete, the mass is washed with water (3*120 L) at about 500C. The mass is cooled to about 25C and toluene (468 L) and potassium tertiary-butoxide (12.6 Kg) is added, then the mass is maintained at the same temperature for about 1 hour. Water (0.85 L) is added and the mass is maintained at the same temperature for about 2 hours. Reaction completion is verified using TLC, then 5-methyl-2-oxo-(1 ,3-dioxolene-4-yl)methyl chloride (20 Kg), tetrabutylammonium bromide (4.82 Kg), and sodium carbonate (3.96 Kg) are added at 40-450C. The mass is stirred at about 55C for about 11 hours. After the reaction is complete, the mass is cooled to about 20C, water (540 L) is added and the pH is adjusted to about 6-7 by adding 10% aqueous HCI. The layers are separated. The aqueous layer is extracted with toluene (240 L). The organic layers are combined and washed with water (270 L). The solvent is distilled under reduced pressure. Acetone (189 L) is added to the residue and the mixture is heated to about 45C to produce a solution, then the solution is cooled to about 300C and maintained for about 20 minutes, followed by cooling to about 2C and maintaining for about 3 hours. The formed solid is filtered, washed with acetone (54 L), and dried for about 4 hours. The material obtained is re- crystallized from acetonitrile to yield 34.0 Kg of the title compound.

The chemical industry reduces the impact on the environment during synthesis, 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, , I believe this compound will play a more active role in future production and life.

Reference£º
Patent; DR. REDDY’S LABORATORIES LTD.; DR. REDDY’S LABORATORIES, INC.; KOLLA, Naveen Kumar; MANNE, Nagaraju; NAREDLA, Anitha; SHINDE, Sachin Gulabrao; WO2011/14611; (2011); A2;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Extracurricular laboratory: Synthetic route of 37830-90-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand 4,5-Dimethyl-1,3-dioxol-2-one reaction routes.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.37830-90-3, 4,5-Dimethyl-1,3-dioxol-2-one it is a common compound, a new synthetic route is introduced below.37830-90-3

37830-90-3, To a solution of 4,5-dimethyl-1,3-dioxolene-2-one (TCI, 10 g, 88 mmol) and N- bromosuccinimide (Fluka, 15.69 g, 88 mmol) in carbon tetrachloride (250 mL) was added benzoyl peroxide (Acros, 500 mg, 2.1 mmol). The reaction mixture was then refluxed for 2.5 h after which time the volatiles were evaporated under vacuum. The resulting residue was triturated with some carbon tetrachloride, filtered and the solid cake was washed with carbon tetrachloride. The filtrate volatiles were removed under vacuum and the yellow oily residue was distilled under vacuum (2-5 torr) to give 4-bromomethyl-5-methyl-1,3-dioxolene-2-one 903 (8.35 g, b.p. 94-98 ¡ãC, 49percent) as a pale yellow oil. 1H NMR (CDCI3) 8 4.21 (s, 2H), 2.17 (s, 3H).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand 4,5-Dimethyl-1,3-dioxol-2-one reaction routes.

Reference£º
Patent; RIGEL PHARMACEUTICALS, INC.; WO2005/97760; (2005); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

A new synthetic route of Triphenyl methyl olmesartan

With the synthetic route has been constantly updated, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

144690-92-6, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”144690-92-6

Trityl olmesartan medoxomil (8 g, 10 mmol) is dissolved in THF (50 ml) and 48 % aqueous hydrobromic acid (3.5 ml, 30 mmol) is added. The mixture is stirred for 1 hour at room temperature and then 1 hour at 0 C. The precipitate is filtered, washed with cold THF (20 ml) and dried overnight in vacuum at room temperature to give 5.7 g of olmesartan medoxomil hydrobromide Form B (98.6 % area)

With the synthetic route has been constantly updated, we look forward to future research findings about Triphenyl methyl olmesartan,belong Dioxole compound

Reference£º
Patent; LEK Pharmaceuticals d.d.; EP2022790; (2009); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Extracurricular laboratory: Synthetic route of Triphenyl methyl olmesartan

With the rapid development of chemical substances, we look forward to future research findings about 144690-92-6

144690-92-6, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”144690-92-6

Example 1 – formation of olmesartan medoxomil hydrobromide Form A Trityl olmesartan medoxomil (8 g, 10 mmol) is added to a mixture of acetone (35 ml) and water (10 ml). To the resulting suspension 48 % aqueous hydrobromic acid (3.5 ml, 30 mmol) is added. The mixture is then stirred at room temperature for 2 h. Water (130 ml) is added and the mixture is stirred for additional 30 minutes. The precipitated triphenylmethanol is filtered off. The filtrate is concentrated in vacuum at 40 C to 100 ml, and then stirred vigorously for 1 h at room temperature and then additional 30 minutes at 0 C. The precipitate is filtered to give 4.7 g of olmesartan medoxomil hydrobromide Form A (97.6 % area); Example 9 – formation of olmesartan medoxomil Trityl olmesartan medoxomil (18 g, 22.5 mmol) (95.5 % area) is added to a mixture of acetone (68 ml) and water (22 ml). To the resulting suspension 48 % aqueous hydrobromic acid (8.5 ml, 72 mmol) is added. The mixture is then stirred at room temperature for 2 h. Water (180 ml) is added and the mixture is stirred for additional 15 minutes. The precipitated triphenylmethanol is filtered off. The filtrate is concentrated in vacuo at 40 C to 200 ml and then stirred vigorously for 20 minutes at room temperature and then additional 40 minutes at 0 C. The precipitate is filtered and dried overnight in vacuum at 25 C to give 12.9 g of olmesartan medoxomil hydrobromide Form A. This was added to THF (150 ml) and the mixture is stirred vigorously for 30 minutes at room temperature and 1 hour at 0 C. The precipitate is filtered and washed with 25 ml of cold THF to give olmesartan medoxomil hydrobromide Form B, which is then dissolved in a mixture of water (100 ml) and acetone (50 ml). To a clear solution saturated aqueous NaHCO3 is added to raise pH to 5.6. The mixture is stirred for 1 hour at room temperature and 2 hours at 0 C. The precipitate is filtered, washed with water and then recrystallised from acetonitrile (87 ml) to give 8.3 g of olmesartan medoxomil (99.74 % area), 144690-92-6

With the rapid development of chemical substances, we look forward to future research findings about 144690-92-6

Reference£º
Patent; LEK Pharmaceuticals d.d.; EP2022790; (2009); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Share a compound : 80841-78-7

With the complex challenges of chemical substances, we look forward to future research findings about 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one

80841-78-7, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”80841-78-7

(3) the C43 H39 N6 NaO3 AMST – 4 and DMF added in a reaction kettle, lowering the temperature to 0 C, adding potassium carbonate, maintain 0 C dropwise C5 H5 ClO3 AMST – 5 dissolved in DMF solution, after the completion of the dropping 85 C reaction 4 hours, monitoring the reaction is finished adding water, sodium chloride and ethyl acetate stirring extraction, liquid, separating the upper organic phase, a mixed solution of water and sodium chloride washing, separating the organic phase at upper layer for sodium sulfate drying, filtering, 60 C concentrated to the reagent, in acetonitrile for 30 C beating 1 hour, cooling to 25 C, filtering, cake isopropyl alcohol leaching, 75 C drying to constant weight to obtain the product C48 H44 N6 O6 AMST – 6; the C43 H39 N6 NaO3 AMST – 4, DMF, potassium carbonate, C5 H5 ClO3 AMST – 5, ethyl acetate, acetonitrile, water, sodium chloride and sodium sulfate the mass ratio of the 192:560: 62:1500: 1000:1500: 300:50;

With the complex challenges of chemical substances, we look forward to future research findings about 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one

Reference£º
Patent; Jiangxi Yong Tong Technology Co., Ltd.; Liu Zhongchun; (10 pag.)CN107311989; (2017); A;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Analyzing the synthesis route of 144690-92-6

The chemical industry reduces the impact on the environment during synthesis, Triphenyl methyl olmesartan, , I believe this compound will play a more active role in future production and life.

144690-92-6, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”144690-92-6

Example 236.0 g (50.3 mmol) ethyl 4-(1-hydroxy-1-methylethyl)-2-propyl-1-{4-[2-(trityltetrazol-5-yl)-phenyl]phenyl}-methyl imidazole-5-carboxylate (Va) and 3.0 g (75.4 mmol) of NaOH were suspended in 413 ml dimethylacetamide. The suspension was then stirred at room temperature for 20 h and after that 6.9 g (50.3 mmol) of K2CO3, were added. The mixture was cooled to 0 C. and solution of 15.4 g (70.4 mmol) 4-chloromethyl-5-methyl-2-oxo-1,3-dioxolene in 39 ml of dimethylacetamide were slowly added. The mixture was slowly heated to 50 C. and stirred at this temperature for 2 h. After esterification was completed, the mixture was cooled to 10 C. and poured into a mixture of 625 ml of ethyl acetate and 625 ml of 10% NaCl, and stirred at 25 C. for 15 min. The phases were separated and organic phase was washed 2¡Á with 500 ml of 10% NaCl, dried over Na2SO4 and filtered. The filtrate was concentrated up to ? (approximately 270 g) at reduced pressure.To the resulting solution, 80 ml of ethanol and 8.3 ml (100 mmol) of conc. HCl were added and stirred at 24-26 C. for 3 h. To the cooled mixture 600 ml of water was added and pH of the suspension was estimated to 5 by addition of 5 M NaOH. The phases were stirred for 15 min and separated. Water phase was reextracted with 150 ml of ethyl acetate. Collected organic phases were dried over Na2SO4, filtered and concentrated under reduced pressure. 560 ml of ethyl acetate were added and the mixture was evaporated again. After that, 300 ml of ethyl acetate were added and the mixture was cooled to 20 C. and stirred for 1 h, filtered off and washed with 20 ml of fresh ethyl acetate. The yield of the product (I) was 21 g (75%).

The chemical industry reduces the impact on the environment during synthesis, Triphenyl methyl olmesartan, , I believe this compound will play a more active role in future production and life.

Reference£º
Patent; KRKA; US2009/131680; (2009); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

A new synthetic route of 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one

The chemical industry reduces the impact on the environment during synthesis, 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, , I believe this compound will play a more active role in future production and life.

4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”80841-78-7

Example 236.0 g (50.3 mmol) ethyl 4-(1-hydroxy-1-methylethyl)-2-propyl-1-{4-[2-(trityltetrazol-5-yl)-phenyl]phenyl}-methyl imidazole-5-carboxylate (Va) and 3.0 g (75.4 mmol) of NaOH were suspended in 413 ml dimethylacetamide. The suspension was then stirred at room temperature for 20 h and after that 6.9 g (50.3 mmol) of K2CO3, were added. The mixture was cooled to 0 C. and solution of 15.4 g (70.4 mmol) 4-chloromethyl-5-methyl-2-oxo-1,3-dioxolene in 39 ml of dimethylacetamide were slowly added. The mixture was slowly heated to 50 C. and stirred at this temperature for 2 h. After esterification was completed, the mixture was cooled to 10 C. and poured into a mixture of 625 ml of ethyl acetate and 625 ml of 10% NaCl, and stirred at 25 C. for 15 min. The phases were separated and organic phase was washed 2¡Á with 500 ml of 10% NaCl, dried over Na2SO4 and filtered. The filtrate was concentrated up to ? (approximately 270 g) at reduced pressure.To the resulting solution, 80 ml of ethanol and 8.3 ml (100 mmol) of conc. HCl were added and stirred at 24-26 C. for 3 h. To the cooled mixture 600 ml of water was added and pH of the suspension was estimated to 5 by addition of 5 M NaOH. The phases were stirred for 15 min and separated. Water phase was reextracted with 150 ml of ethyl acetate. Collected organic phases were dried over Na2SO4, filtered and concentrated under reduced pressure. 560 ml of ethyl acetate were added and the mixture was evaporated again. After that, 300 ml of ethyl acetate were added and the mixture was cooled to 20 C. and stirred for 1 h, filtered off and washed with 20 ml of fresh ethyl acetate. The yield of the product (I) was 21 g (75%).

The chemical industry reduces the impact on the environment during synthesis, 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one, , I believe this compound will play a more active role in future production and life.

Reference£º
Patent; KRKA; US2009/131680; (2009); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem