Extracurricular laboratory: Synthetic route of 144690-92-6

As the rapid development of chemical substances, we look forward to future research findings about 144690-92-6

Triphenyl methyl olmesartan, cas is 144690-92-6, it is a common heterocyclic compound, the Dioxole compound, its synthesis route is as follows.

Into a 1000 mL four-necked flask equipped with a two-piece stirring blade having a diameter of 10 cm,50 g of trityl olmesartan medoxomil, 225 ml of acetic acid and 75 ml of water were added and stirred at 40 C. for 2 hours to carry out deprotection reaction.Subsequently, the reaction solution was cooled to 20 C. and stirred at 20 C. for 1 hour, and the precipitated triphenylmethanol was removed by vacuum filtration,To the obtained filtrate were added 250 ml of 10% sodium hydrogen carbonate and 500 ml of ethyl acetate, followed by vigorous stirring, and the aqueous layer was separated to obtain an organic layer containing olmesartan medoxomil.200 ml of ethyl acetate was distilled off from the organic layer, and the mixture was stirred at 20 to 30 C. for 1 hour. The precipitated solid was collected by filtration under reduced pressure as a wet body.The obtained wet body was dried at 40 C. for 14 hours to obtain 30 g of crystals of olmesartan medexomil (purity: 99.54%).

As the rapid development of chemical substances, we look forward to future research findings about 144690-92-6

Reference£º
Patent; TOKUYAMA CORPORATION; MORI, HIROYUKI; TANAKA, KENJI; (11 pag.)JP2015/74608; (2015); A;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Downstream synthetic route of 80841-78-7

The synthetic route of 80841-78-7 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.80841-78-7,4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one,as a common compound, the synthetic route is as follows.

Example 1; Preparation of olmesartan medoxomilTo dimethyl acetamide (300 ml) was added 4-(1-hydroxy-1-methylethyl)-2-propyl imidazol- 5-carboxylic acid ethyl ester (50 gms) and powdered sodium hydroxide (26 gms). To this, 4-[2-(trityltetrazol-5-yl)phenyl]benzyl bromide (135 gms) was charged at 45-500C. The contents were stirred for 5 hours at 45-500C. Diisopropylethyl amine (100 ml) was charged to the reaction mass at 40-450C. A solution of 5-methyl-2-oxo-1 , 3-dioxane-4-yl)methyl chloride (80 gms) diluted with dimethyl acetamide (160 ml) was slowly added to the reaction mass at 40-450C over a period of 1 hour. The contents were heated to 60-650C and maintained for 4 hours. The reaction mass was then cooled to 30-350C and neutralized with concentrated hydrochloride acid. The reaction mass was filtered to remove inorganic impurities, charcoalized using charcoal (10 gms) andstirred for 30 minutes at 40-450C. The reaction mass was filtered over hyflo. The clear filtrate was acidified with hydrochloric acid (100 ml) slowly at 25-30C. The contents were stirred at 60C for 1 hour. The reaction mass was chilled to 0-5C and filtered to remove tritanol. The reaction mass was concentrated under reduced pressure. The residue was quenched with water (500ml), neutralized with base and extracted in dichloromethane (500 ml). The clear dichloromethane extract was then concentrated under reduced pressure and stripped off with acetone. The residue thus obtained was isolated from acetone (250 ml) to give 55 gms of the title compound. Chromatographic purity- > 99%; Example 2Preparation of olmesartan medoxomilTo dimethyl acetamide (600 ml) was added 4-(1-hydroxy-1-methylethyl)-2-propyl imidazol- 5-carboxylic acid ethyl ester (100 gms) and powdered potassium hydroxide (50 gms). To this was charged 4-[2-(trityltetrazol-5-yl)phenyl]benzyl bromide (270 gms) at 45-50C. The contents were stirred for 5 hours at 45-50C. Diisopropylethyl amine (200 ml) was charged to the reaction mass at 40-450C. To this was slowly added a solution of 5-methyl-2-oxo- 1 ,3-dioxane-4-yl)methyl chloride (160 gms) diluted with dimethyl acetamide (320 ml) at 40- 45C over a period of 1 hour. The contents were heated to 60-650C and maintained for 4 hours. The reaction mass was then cooled to 30-350C and was neutralized with concentrated hydrochloride acid. The reaction mass was filtered to remove inorganic impurities. The reaction mass was charcoalized using charcoal (20 gms) and was stirred for 30 minutes at 40-450C. The reaction mass was filtered over hyflo. The clear filtrate was acidified with hydrochloric acid (200 ml) slowly at 25-300C. The contents were stirred at 60C for 1 hour. The reaction mass was chilled to 0-50C and was filtered to remove tritanol. The reaction mass was concentrated under reduced pressure. The residue was quenched with water (1000 ml), neutralized with base and extracted in dichloromethane (1000 ml). The clear dichloromethane extract was then concentrated under reduced pressure, stripped off with acetone. The residue thus obtained was isolated from the acetone (500 ml) to give 110 gms of the title compound. Chromatogrphic purity- > 99%; Example 4Preparation of trityl olmesartan medoxomilTo dimethyl acetamide (300 ml) was added 4-(1-hydroxy-1-methylethyl)-2-propyl imidazol- 5-carboxylic acid ethyl ester (50 gms) and powdered potassium hydroxide (25 gms). To this was charged 4-[2-(trityltetrazol-5-yl)phenyl]benzyl bromide (135 gms) at 45-500C. The contents were stirred for 5 hours at 45-500C. Diisopropylethyl amine (100 ml) was charged to the reaction mass at 40-45C. To this was slowly added a solution of 5-methyl-2-oxo- 1 ,3-dioxane-4-yl) methyl chloride (80 gms) diluted with dimethyl acetamide (160 ml) at 40- 45C over a period of 1 hour. The contents were heated to 60-650C and maintained for 4 hours. The reaction mass was then cooled to 30-350C. and was neutralized with concentrated hydrochloride acid. The reaction mass was filtered to remove inorganics. The reaction mass was charcoalized using charcoal (10 gms) and was stirred for 30 minutes at 40-450C. The reaction mass was filtered over hyflo. The clear filtrate was quenched with purified water(200 ml)at 25-30C over a period of 3-4 hours. The contents were stirred at 25-300C for 30 minutes. Crude trityl olmesartan medoxomil was isolated by filtration, slurried in water (500 ml), centrifuged and dried under reduced pressure at 45-50C.

The synthetic route of 80841-78-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; CIPLA LIMITED; CURTIS, Philip, Anthony; WO2008/43996; (2008); A2;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Application of 1-Phenylimidazolidin-2-one

As the rapid development of chemical substances, we look forward to future research findings about 80841-78-7

A common heterocyclic compound, the Dioxole compound, name is 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one,cas is 80841-78-7, mainly used in chemical industry, its synthesis route is as follows.

To BIC (110 g, 1 eq) was added acetone (385 mL, 3.5 vol) at 25C – 30C, and the mixture was dissolved by stirring for 5 min. Sodium carbonate (20.85 g, 1.3 eq) and potassium iodide (0.25 g, 0.01) were added, and the mixture was stirred for 10 min. A solution of 4-chloromethyl-5-methyl-2-oxo-1,3-dioxolene (31.456 g, 1.4 eq) in acetone (165 mL, 1.5 vol) was added thereto. The reaction mixture was heated to 45C – 50C, and stirred at the same temperature for 12 hr. Using TLC (thin layer chromatography) (TLC eluent: 10% methanol/methylene chloride, detection method: UV), complete disappearance of BIC was confirmed. The reaction mixture was cooled to 25C – 30C. Then, the solvent contained in the reaction mixture was evaporated under reduced pressure at 40C – 45C. To the obtained residue were added 10% brine (550 mL, 5 vol) and toluene (550 mL, 5 vol). Furthermore, the mixture was adjusted to pH 7 – 8 by adding 5% hydrochloric acid (33 mL), stirred for 10 min, left standing for 5 min and partitioned. The aqueous layer was extracted with toluene (2×330 mL, 2×3 vol). The extracts were combined with the organic layer, 10% brine (550 mL, 5 vol) was added, and the mixture was stirred for 5 min, left standing for 45 min, partitioned, and concentrated under reduced pressure at 40C – 45C to give TOLM (110 g, 90%). [0306] To the obtained TOLM was added acetone (110 mL, 1 vol), and the mixture was stirred at 25C – 30C for 30 min. n-Heptane (440 mL, 4 vol) was added, and the mixture was cooled to 5C – 10C and stirred at 5C – 10C for 30 min, whereby precipitation of a solid was confirmed. The solid (80 g, 66%) was collected by filtration, and blast dried. To the obtained solid was added isopropyl alcohol (400 mL, 5 vol), and the mixture was heated to 50C – 55C and stirred at 50C – 55C for 1 hr. Then, the mixture was cooled to 25C – 30C, and stirred at 25C – 30C for 1 hr. The resulting solid was filtered and suction-filtered for 10 min to give TOLM (76 g, 62%).

As the rapid development of chemical substances, we look forward to future research findings about 80841-78-7

Reference£º
Patent; API Corporation; SEKI, Masahiko; EP2891650; (2015); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Simple exploration of 144690-92-6

As the paragraph descriping shows that 144690-92-6 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.144690-92-6,Triphenyl methyl olmesartan,as a common compound, the synthetic route is as follows.

A solution of MTT in an organic solvent and water (20%) was heated for 4-8 hrs at reflux. When the solvents were either acetonitrile (ACN), isopropyl alcohol (IPA) or t-butanol (t-BuOH), 1 volume of water was added, and the reaction was stirred until the amount of MTT was less than 2%. The mixture was evaporated to dryness. Ethyl acetate (EtOAc, 1 volume) was added to the residue and then evaporated again (twice). The resulting solid was dissolved in EtOAc (12 vol) and heated to reflux. The solution was cooled (2 C.) and stirred for 2 hrs. The product was filtered, washed (EtOAc, 1 vol), and dried on vacuum (45 C.). Table 1 shows the process details with different organic solvents: TABLE 1 Total solvent Time Solvent(s) Volume Temperature ( C.) (hrs) pH ACN:H2O 5:1 + 1 85 7 4.89-4.3 IPA:H2O 5:1 + 1 85 7 4.62-4.25t-BuOH:H2O 5:1 + 1 85 7 4.78-4.28n-propanol:H2O 5:1 reflux 2.5 4.3n-BuOH:H2O 5:1 110 2.5 4.412-BuOH:H2O 5:1 100 3 4.5iso-penthanol:H2O 5:1 100 3 5DMA:H2O 5:1 100 4 4.5DMF:H2O 5:1 100 4 4.5

As the paragraph descriping shows that 144690-92-6 is playing an increasingly important role.

Reference£º
Patent; Hedvati, Lilach; Pilarsky, Gideon; Shenkar-Garcia, Natalia; US2006/148870; (2006); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Downstream synthetic route of 37830-90-3

As the paragraph descriping shows that 37830-90-3 is playing an increasingly important role.

37830-90-3, 4,5-Dimethyl-1,3-dioxol-2-one is a Dioxole compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Example 12: (5-Methyl-2-oxo-l,3-dioxol-4-yl)methyl 4-[(4-methoxyphenyl)amino]-6- (methylcarbamoy^quinoline-S-carboxylate. a) Preparation of the intermed 4-bromomethyl-5-methyl-2-oxo-l,3-dioxolene; To a solution of 4,5-dimethyl-l,3-dioxol-2-one (342 mg, 3.0 mmol) in carbon tetrachloride (10 mL) was added azobisisobutyronitrile (AIBN, 9.8 mg, 0.06 mmol) and iV-bromosuccinimide NBS (580 mg, 3.3 mmol). The reaction mixture was heated in the dark in a stem block at 78 C for 20 minutes. The mixture was cooled and evaporated almost into dryness. The mixture was filtered and the residue was evaporated to give a light yellow solid, which contained 20 percent starting material Yield: 450 mg (58percent). The mixture was used in the next step without further purifi- cation.

As the paragraph descriping shows that 37830-90-3 is playing an increasingly important role.

Reference£º
Patent; CLANOTECH AB; MALM, Johan; RINGOM, Rune; CALDIROLA, Patrizia; WESTMAN, Jacob; WO2010/133669; (2010); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Application of 2,3-Dihydrobenzo[b][1,4]dioxine-2-carboxylic acid

As the rapid development of chemical substances, we look forward to future research findings about 37830-90-3

A common heterocyclic compound, the Dioxole compound, name is 4,5-Dimethyl-1,3-dioxol-2-one,cas is 37830-90-3, mainly used in chemical industry, its synthesis route is as follows.

(1) Synthesis of 4-bromomethyl-5-methyl-1,3-dioxolen-2-one[the compound of formula (III) in which X is a bromine atom]: 3.42 g of 4,5-dimethyl-1,3-dioxolen-2-one (synthesised in accordance with Tetrahedron Letters, (1972), pages 1701-1704) was dissolved in 150 ml of carbon tetrachloride, and 5.34 g of N-bromosuccinimide and a catalytic amount of alpha,alpha’-azobisisobutyronitrile were added. The mixture was heated under reflux for 15 minutes. The reaction mixture was concentrated to half of its volume and the resulting insoluble matter was removed by filtration. Concentrating the filtrate gave a syrupy residue. The residue was distilled under reduced pressure to give a fraction boiling at 115¡ã to 120¡ã C./5 mm Hg which was 4.2 g (yield 73percent) of the captioned compound.

As the rapid development of chemical substances, we look forward to future research findings about 37830-90-3

Reference£º
Patent; Kanebo Ltd.; US4455310; (1984); A;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

New learning discoveries about 144690-92-6

The synthetic route of 144690-92-6 has been constantly updated, and we look forward to future research findings.

144690-92-6, Triphenyl methyl olmesartan is a Dioxole compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To 3L reaction flask 165.3g above prepared 1 – [[[2- (triphenylmethyl) -2H- tetrazole-5-yl] biphenyl-4-yl] methyl] -2- propyl-4- (1-hydroxy-1-methylethyl) imidazole-5-carboxylic acid (5-methyl-2-oxo-1,3-dioxolen-4-yl) methyl ester ( compound ) and 1.90L70% acetic acid, mechanical stirring, heated to 50 , the reaction 2.5h, an ice bath was added 1.1L of water was stirred.Filtration, the filtrate with 300ml * 3 times extracted with methylene chloride, the methylene chloride phase 150mL ¡Á 5 times with 5% acetic acid solution was washed with acetic acid solution and extracted with 250ml of dichloromethane, and the combined organic phases.The solvent was distilled off under reduced pressure, the residue was added 380mL of ethyl acetate was heated with stirring and cooling to precipitate a solid.Suction filtered, the filter cake was dried in vacuo to give a white solid product to 89.6 g, weight yield was 77.8%.To a 1L reaction flask above 85g crude product olmesartan medoxomil, 420ml of tetrahydrofuran was heated at reflux, was added 360ml of ethyl acetate, the ice bath was stirred for crystallization.Filtration cake blast drying to constant weight to give the product as a white solid 74.8g, a yield of 83.5% by weight.

The synthetic route of 144690-92-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Bengbu Tu Shan Fengyuan Pharmaceutical Co., Ltd.; Ma, Qisheng; Li, Baoqin; Sun, Peng; (18 pag.)CN105418593; (2016); A;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Some tips on 144690-92-6

As the paragraph descriping shows that 144690-92-6 is playing an increasingly important role.

144690-92-6, Triphenyl methyl olmesartan is a Dioxole compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Example 5; Olmesartan medoxomil (V); Water (10 g) was added to a solution of the starting substance (III; 20 g) in acetonitrile (50 ml), and the mixture was heated to a mild boil for 14 h. Acetonitrile was evaporated, and, after dissolving in acetone (150 ml), the mixture was filtered through alumina and concentrated. After crystallization from the mixture tetrahydrofuran / ethyl acetate H g (78 %) of the product with an HPLC purity of 97.0 % was obtained. Recrystallization from methanol and water gave 1O g of the product with an HPLC purity of 99.3 %; m.p. 175- 177 0C.; Example 6; Olmesartan medoxomil (V); Water (10 g) was added to a solution of the starting substance (III; 10 g) in acetonitrile (50 ml), and the mixture was heated to a mild boil for 14 h. Acetonitrile was evaporated, and, after dissolving in acetone (150 ml), the mixture was filtered through silica gel and concentrated. After crystallization from acetonitrile, 4 g (57 %) of the product was obtained. After recrystallization from the mixture methyl tert-butyl ether / ethyl acetate, 3.4 g of the product with an HPLC purity of 99.4 % was obtained; m.p. 175-177 C.

As the paragraph descriping shows that 144690-92-6 is playing an increasingly important role.

Reference£º
Patent; ZENTIVA, A.S.; WO2007/48361; (2007); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Downstream synthetic route of 144690-92-6

The synthetic route of 144690-92-6 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.144690-92-6,Triphenyl methyl olmesartan,as a common compound, the synthetic route is as follows.

Into a 1000 mL four-necked flask equipped with a two-piece stirring blade having a diameter of 10 cm,50 g of trityl olmesartan medoxomil, 225 ml of acetic acid and 75 ml of water were added and stirred at 40 C. for 2 hours to carry out deprotection reaction.Subsequently, the reaction solution was cooled to 20 C. and stirred at 20 C. for 1 hour, and the precipitated triphenylmethanol was removed by vacuum filtration,To the obtained filtrate were added 250 ml of 10% sodium hydrogen carbonate and 500 ml of ethyl acetate, followed by vigorous stirring, and the aqueous layer was separated to obtain an organic layer containing olmesartan medoxomil.200 ml of ethyl acetate was distilled off from the organic layer, and the mixture was stirred at 20 to 30 C. for 1 hour. The precipitated solid was collected by filtration under reduced pressure as a wet body.The obtained wet body was dried at 40 C. for 14 hours to obtain 30 g of crystals of olmesartan medexomil (purity: 99.54%).

The synthetic route of 144690-92-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; TOKUYAMA CORPORATION; MORI, HIROYUKI; TANAKA, KENJI; (11 pag.)JP2015/74608; (2015); A;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem

Application of 2,3-Dihydrobenzo[b][1,4]dioxine-2-carboxylic acid

As the rapid development of chemical substances, we look forward to future research findings about 144690-92-6

A common heterocyclic compound, the Dioxole compound, name is Triphenyl methyl olmesartan,cas is 144690-92-6, mainly used in chemical industry, its synthesis route is as follows.

A solution of MTT in an organic solvent and water (20%) was heated for 4-8 hrs at reflux. When the solvents were either acetonitrile (ACN), isopropyl alcohol (IPA) or t-butanol (t-BuOH), 1 volume of water was added, and the reaction was stirred until the amount of MTT was less than 2%. The mixture was evaporated to dryness. Ethyl acetate (EtOAc, 1 volume) was added to the residue and then evaporated again (twice). The resulting solid was dissolved in EtOAc (12 vol) and heated to reflux. The solution was cooled (2 C.) and stirred for 2 hrs. The product was filtered, washed (EtOAc, 1 vol), and dried on vacuum (45 C.). Table 1 shows the process details with different organic solvents: TABLE 1 Total solvent Time Solvent(s) Volume Temperature ( C.) (hrs) pH ACN:H2O 5:1 + 1 85 7 4.89-4.3 IPA:H2O 5:1 + 1 85 7 4.62-4.25t-BuOH:H2O 5:1 + 1 85 7 4.78-4.28n-propanol:H2O 5:1 reflux 2.5 4.3n-BuOH:H2O 5:1 110 2.5 4.412-BuOH:H2O 5:1 100 3 4.5iso-penthanol:H2O 5:1 100 3 5DMA:H2O 5:1 100 4 4.5DMF:H2O 5:1 100 4 4.5

As the rapid development of chemical substances, we look forward to future research findings about 144690-92-6

Reference£º
Patent; Hedvati, Lilach; Pilarsky, Gideon; Shenkar-Garcia, Natalia; US2006/148870; (2006); A1;,
1,3-Benzodioxole – Wikipedia
Dioxole | C3H4O2 – PubChem